1,904 research outputs found

    Targeted Maximum Likelihood Estimation using Exponential Families

    Get PDF
    Targeted maximum likelihood estimation (TMLE) is a general method for estimating parameters in semiparametric and nonparametric models. Each iteration of TMLE involves fitting a parametric submodel that targets the parameter of interest. We investigate the use of exponential families to define the parametric submodel. This implementation of TMLE gives a general approach for estimating any smooth parameter in the nonparametric model. A computational advantage of this approach is that each iteration of TMLE involves estimation of a parameter in an exponential family, which is a convex optimization problem for which software implementing reliable and computationally efficient methods exists. We illustrate the method in three estimation problems, involving the mean of an outcome missing at random, the parameter of a median regression model, and the causal effect of a continuous exposure, respectively. We conduct a simulation study comparing different choices for the parametric submodel, focusing on the first of these problems. To the best of our knowledge, this is the first study investigating robustness of TMLE to different specifications of the parametric submodel. We find that the choice of submodel can have an important impact on the behavior of the estimator in finite samples

    Non-agency interventions for causal mediation in the presence of intermediate confounding

    Full text link
    Recent approaches to causal inference have focused on causal effects defined as contrasts between the distribution of counterfactual outcomes under hypothetical interventions on the nodes of a graphical model. In this article we develop theory for causal effects defined with respect to a different type of intervention, one which alters the information propagated through the edges of the graph. These information transfer interventions may be more useful than node interventions in settings in which causes are non-manipulable, for example when considering race or genetics as a causal agent. Furthermore, information transfer interventions allow us to define path-specific decompositions which are identified in the presence of treatment-induced mediator-outcome confounding, a practical problem whose general solution remains elusive. We prove that the proposed effects provide valid statistical tests of mechanisms, unlike popular methods based on randomized interventions on the mediator. We propose efficient non-parametric estimators for a covariance version of the proposed effects, using data-adaptive regression coupled with semi-parametric efficiency theory to address model misspecification bias while retaining n\sqrt{n}-consistency and asymptotic normality. We illustrate the use of our methods in two examples using publicly available data

    DermaKNet: Incorporating the Knowledge of Dermatologists to Convolutional Neural Networks for Skin Lesion Diagnosis

    Get PDF
    Traditional approaches to automatic diagnosis of skin lesions consisted of classifiers working on sets of hand-crafted features, some of which modeled lesion aspects of special importance for dermatologists. Recently, the broad adoption of convolutional neural networks (CNNs) in most computer vision tasks has brought about a great leap forward in terms of performance. Nevertheless, with this performance leap, the CNN-based computer-aided diagnosis (CAD) systems have also brought a notable reduction of the useful insights provided by hand-crafted features. This paper presents DermaKNet, a CAD system based on CNNs that incorporates specific subsystems modeling properties of skin lesions that are of special interest to dermatologists aiming to improve the interpretability of its diagnosis. Our results prove that the incorporation of these subsystems not only improves the performance, but also enhances the diagnosis by providing more interpretable outputs.This work was supported in part by the National Grant TEC2014-53390-P and National Grant TEC2014-61729-EXP of the Spanish Ministry of Economy and Competitiveness, and in part by NVIDIA Corporation with the donation of the TITAN X GPUPublicad
    • 

    corecore