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DermaKNet: Incorporating the knowledge of
dermatologists to Convolutional Neural Networks

for skin lesion diagnosis
Iván González-Dı́az, Member, IEEE,

Abstract—Traditional approaches to automatic diagnosis of
skin lesions consisted of classifiers working on sets of hand-
crafted features, some of which modeled lesion aspects of special
importance for dermatologists. Recently, the broad adoption of
Convolutional Neural Networks(CNNs)in most computer vision
tasks has brought about a great leap forward in terms of
performance. Nevertheless, with this performance leap, the CNN-
based Computer Aided Diagnosis (CAD) systems have also
brought a notable reduction of the useful insights provided by
hand-crafted features. This paper presents DermaKNet, a CAD
system based on CNNs that incorporates specific subsystems
modeling properties of skin lesions that are of special interest
to dermatologists, aiming to improve the interpretability of its
diagnosis. Our results prove that the incorporation of these
subsystems not only improves the performance, but also enhances
the diagnosis by providing more interpretable outputs.

Index Terms—Skin lesion analysis, Melanoma, Convolutional
Neural Networks, Dermoscopy, CAD

I. INTRODUCTION

EARLY Melanoma Diagnosis is one of the traditional
fields of application of Computer Aided Diagnosis

(CAD) systems. In addition to the high incidence and aggres-
siveness of melanoma (it is the skin cancer that causes the
most deaths in Europe [1]), there are other aspects that make
it an specially suitable field for automatic diagnosis methods.
For example, the early removal of the lesion completely cures
the disease, effectively preventing metastasis [2]. Melanocytes
are one of the very few cells that are naturally colored and
visible to the eye, which make them possible to diagnose
using clinical images. Also, the use of portable and affordable
acquisition instruments, such as dermatoscopes, improves the
accuracy in the diagnosis can be improved by 5-30% [3]. As
a result, there is a growing interest in incorporating automatic
systems in the daily practice of dermatologists, aiming not
to replace their diagnosis, but to improve it by providing
valuable information about the clinical case, and serving as
filtering tools that automatically detect those cases with a high
confidence of benignity, which can have a great impact in the
final amount of moles that must be analyzed by the clinicians.

However, despite the research efforts devoted to the topic,
these systems have yet to become part of everyday clin-
ical practice. From our point of view, there are two fac-
tors currently hampering the adoption of CAD systems by
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dermatologists. Firstly, the lack of large, open, annotated
datasets, containing images of lesions gathered by different
medical institutions and a great variety of dermatoscopes,
has undermined the generalization capability of developed
CAD systems, leading to poor results when applied to dif-
ferent datasets. Additionally, it has prevented standard and
fair comparisons between proposed methods, thus hindering
the scientific advances in the field. Secondly, most of CAD
systems simply provide a tentative diagnosis to the clinicians,
which does not actually help them much in practice. Hence,
it would be more desirable for these systems to be able to
provide some insight about the elements and properties of the
lesion that support the diagnosis.

In regard to the first factor, the International Skin Imaging
Collaboration: Melanoma Project (ISIC1) is an academia-
industry partnership created to facilitate digital skin imaging
technologies to help reduce melanoma mortality. In addition to
developing standards to address the technologies, techniques,
and terminology used in skin imaging, ISIC is continuously
building an open source public access archive (ISIC Archive2)
of skin images that allows researchers to assess and validate
their CAD systems. The archive is large and includes im-
ages acquired using different devices from multiple medical
institutions. Furthermore, since 2016, the association is also
promoting the research in the field by organizing an Inter-
national Challenge in which automatic methods for lesion
segmentation, dermoscopic feature detection and skin disease
diagnosis are evaluated using images of the archive [4] [5].

With respect to the second, in the last few years there
have been changes in machine learning technology that have
increased the difficulty of interpreting the results of the CAD
systems. Whereas traditional approaches relied on low-level
handcrafted features computed over the lesion [6] [7], some
of them modeling aspects of special importance for dermatol-
ogists in their diagnosis [8] [9], modern approaches, such as
[10] and [11], have adopted the use of Convolutional Neural
Networks (CNNs), due to their impressive performance in
many computer vision tasks such as classification [12] [13],
detection [14] and segmentation [15] [16]. The drawback of
CNN-based systems is the lack of clear understanding of
the underlying factors and properties that support the final
decision.

This paper presents DermaKNet (Dermatologist Knowledge

1http://isdis.net/isic-project/
2https://isic-archive.com/
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Network), a CAD system for automatic diagnosis of skin
lesions that aims to keep the best of both alternatives and,
consequently, incorporates the intuitions of dermatologists into
a CNN-based framework. By developing novel computational
blocks in the net, we model properties of the lesions that
are known to be discriminative for clinicians. The benefit of
our approach is twofold: firstly, as we will demonstrate in
the experimental section, the performance of the diagnosis is
improved and, secondly, the interpretability of the system can
be enhanced by analyzing the outputs of these expert-inspired
blocks. In particular, our system includes several elements, not
found in general-purpose classification CNNs, that become the
main contributions of this work:
• A Dermoscopic Structure Segmentation Network which

segments the lesion area into a set of high-level dermoscopic
features corresponding to global and local structures that have
turned out to be of special interest for dermatologists in their
diagnosis. In the absence of strongly annotated data, we have
trained this network from weakly-annotated clinical cases.
• A novel Modulation Block that incorporates these seg-

mentations into the diagnosis process as probabilistic modu-
lators of neuron activations.
• Two additional novel blocks, Polar Pooling and Asymme-

try, that mimic the way in which dermatologists analyze skin
lesions.
• 3-branch top-layers in the diagnosis CNN, that provide

the final diagnosis using both the traditional information
channels as well as these novel pathways modeling expert
intuitions.
• Some other elements with a great impact over the final

system performance such as a specifically tailored data aug-
mentation process, or an external classifier based on non-visual
meta-data.

The remainder of this paper is organized as follows: Section
II performs a review of the related literature. In Section III
we provide a general description of our method for automatic
diagnosis of skin lesions. Sections IV and V present our
Dermoscopic Structure Segmentation and Diagnosis networks,
respectively. Section VI explains the experiments and dis-
cusses the results that support our method and, finally, Section
VII summarizes our conclusions and outlines future lines of
research.

II. RELATED WORK

Traditional approaches address the problem of automatic
melanoma diagnosis using discriminative methods working
over sets of hand-crafted visual features from dermoscopic
images. These features vary from general-purpose descriptors,
e.g. color and texture filter-banks [17] [18] [19], to problem-
dependent knowledge-based features. The later deserve more
interest from our point of view since they aim to model par-
ticular lesion aspects of special importance for dermatologists.
Consequently, besides improving the system performance, they
also enhance the interpretability of the automatic diagnosis
[20]. In [8], the authors proposed a reduced set of interpretable
features modeling some properties of the ABCD rule [21],
such as symmetry and border sharpness. Along the same lines,

some other methods start by detecting a set of dermoscopic
structures that are later used to generate the diagnosis. Exam-
ples of these dermoscopic features include reticular patterns,
dots and globules, streaks, etc. The complete set of structures
that are commonly considered was defined in the pattern
analysis method for melanoma diagnosis [3], which has been
widely adopted by specialists due to its accurate results.

To tackle the problem of detection of dermoscopic features,
classical segmentation techniques, such as Gaussian Mixture
Models [22], Markov Random Fields [23] and Topic Models
[9], or even discriminative approaches working over textons
[24], have been adopted in the literature. Once the areas
corresponding to some of these structures have been identified,
diagnosis can be inferred: in [25] the ABCD rule is combined
with structure recognition in an attempt to detect suspicious
lesions, in [26] the 7-point checklist method is applied to the
outputs of these structure detectors, and in [9] probabilistic
segmentation maps are used to build a set of specific classi-
fiers, each one focusing on a particular structure, which are
then fused to provide the final diagnosis.

During the last few years, with the advent and broad
adoption of CNNs in many recognition problems in com-
puter vision, several works have been proposed that apply
this paradigm to melanoma classification. In [10] CNNs are
combined with sparse coding and SVMs to provide a diagno-
sis. In [27] a Fully Convolutional Neural Network (FCNN)
is first used to segment the input image into lesion area
and surrounding skin; then a square and tight cropping is
performed, and finally a diagnosis is provided using a CNN
that is fine-tuned from the well-known resnet model [13]. In
[28], the authors have trained a CNN using a very large dataset
with 129,450 clinical images and 2,032 different diseases,
and tested its performance against 21 board-certified derma-
tologists on biopsy-proven clinical images with two critical
binary classification use cases: malignant carcinomas versus
benign seborrheic keratoses and malignant melanomas versus
benign nevi. Their results show that the automatic system
achieves similar performance than all tested experts across
both tasks, demonstrating a level of competence comparable to
dermatologists. However, despite their impressive performance
when enough training data is available, CNN-based methods
still lack a clear understanding of the underlying factors and
properties that support their final decision, limiting their us-
ability and preventing their broad adoption by dermatologists.

In this paper, we propose to incorporate knowledge-based
interpretable properties of skin lesions into the framework of
CNNs. Although Majtner et al. [29] have previously tried to
fuse hand-crafted features with CNNs, their approach simply
fused the outputs of two independent classifiers (one based on
hand-crafted features and the other using a CNN) to generate
the final diagnosis. To the best of our knowledge, this is the
first attempt to achieve a seamless integration between the
knowledge of dermatologists and CNNs. For that purpose,
we have developed several novel processing blocks, with the
dual goal of improving the system performance and gaining
interpretability in the diagnosis.
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Fig. 1. Main processing pipeline of DermaKNet. Each clinical case is defined by an image Xc. The Lesion Segmentation Net firstly segments the image
into areas corresponding to lesion and surrounding skin, giving rise to the binary masks Mc. Then, the Data Augmentation Module extends the initial
visual support of the lesion and generates additional views X̃c

v of the lesion by applying rotations and crops. Next, the Dermoscopic Structure Segmentation
Network segments each lesion view into a set of high level dermoscopic structures s. Finally, the whole set of the lesion images X̃c

v and their corresponding
segmentation maps Sc

vs are passed to the Diagnosis Network, which generates the diagnosis.

III. AN AUTOMATIC METHOD FOR SKIN LESION DIAGNOSIS

In this section we will provide a general description of our
CAD system and also explain those processing blocks that,
although have an important impact in the system performance,
do not constitute the main contributions of our paper. Finally,
these main contributions will be later described in their own
sections.

A. General description of the system

The main pipeline of DermaKNet is depicted in Fig. 1. It
comprises the following steps:

1) For each clinical case c, a dermoscopic image Xc is
first passed to the Lesion Segmentation Network (LSN), which
generates a binary mask Mc outlining the area of the image
corresponding to the lesion. A description of this module is
given in Section III-B.

2) Next, the pair {Xc,Mc} goes through the Data Augmen-
tation Module. This module extends the initial visual support
of the lesion and generates additional views v of the lesion
by applying rotations and crops. Hence, the output of this
module is an extended set of images X̃c

v representing the
clinical case. Section III-C provides a detailed description of
the data augmentation process.

3) The following step in the process is performed by the
Dermoscopic Structure Segmentation Network (DSSN). It aims
to segment each view of the lesion X̃v into a set of eight der-
moscopic features corresponding to global and local structures
that have turned out to be relevant for dermatologists in their
daily practice. Examples of these structures are dots/globules,
regression areas, streaks, etc. The output of this subsystem is
a set of 8 segmentation maps Scvs, s = 1...8, each associated
with one of the considered structures. This module, as well
as the format of the segmentation maps, will be introduced in
Section IV.

4) The augmented set {X̃c
v , S

c
vs} is passed to the Diagnosis

Network (DN), which provides a tentative diagnosis for the
clinical case. The description of this network can be found in
Section V.

Fig. 2. Some examples of clinical cases (top) and the binary lesion
segmentations computed by our Lesion Segmentation Module (bottom).

5) If additional non-visual meta-data about the lesion (e.g.
patient age, sex, etc.) are available, the previous diagnosis is
further factorized using the score of a classifier working over
these non-visual information to produce the final diagnosis Yc.
This classifier is described in Section III-D.

B. Lesion Segmentation Network (LSN)

The Lesion Segmentation Network (LSN) has been devel-
oped by training a Fully Convolutional Network (FCN) [15].
FCNs have achieved state-of-the-art results on the task of se-
mantic image segmentation (general content), as demonstrated
in the PASCAL VOC Segmentation task [30]. In order to train
a network for our particular task of lesion-skin segmentation,
we have used the training set for the lesion segmentation task
in the 2017 ISBI challenge [5].

In Figure 2 we show various examples of lesion segmenta-
tions computed by this module. Let us note that the goal is not
to generate very accurate segmentation maps, but to produce
binary masks Mc that broadly identify the area of the image
that corresponds to the lesion.

C. Data Augmentation Module and Normalized Polar Coor-
dinates

It is well known that data augmentation often boosts the
performance of deep neural networks, mainly when the amount
of available training data is limited. Among all the potential
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image variations and artifacts, invariance to orientation is
probably the main requirement in our particular scenario,
as dermatologists do not follow a specific protocol during
the acquisition of an image with the dermatoscope. More
complex geometric transformations such as affine or projective
transformations are less interesting since the dermatoscope
is normally placed just over and orthogonally to the lesion
surface.

Based on these observations, the particular process of data
augmentation for a given clinical case c is illustrated in Fig.
3 and described next:

1) First, starting from the pair {Xc,Mc}, we generate a set
of rotated versions (see Fig. 3b).

2) Since rotating an image without losing any visual in-
formation requires adding new areas that did not exist in the
original view, we find and crop the largest inner rectangle
satisfying that all pixels belong to the original image (Fig.
3c). We have observed that removing these black areas (using
the inner rectangle) at the expense of loosing some regions
of the lesion produces better results than keeping the whole
lesion and the black regions. The rationale behind is that,
although some of lesion details may be partially lost in some
of the views, we are considering all of them by analyzing
the whole augmented set of lesion views. However, this fact
makes necessary to perform data augmentation also in test.

3) Finally, since our subsequent CNNs (Structure Segmen-
tation and Diagnosis) require square input images of 256x256
pixels, we perform various squared crops which are in turn
re-sized to these dimensions (see Fig. 3d-3f).
In particular, in our approach we have considered 8 rotations
and 3 crops for each clinical case c, leading to an augmented
set of 24 images, each one represented by a tensor X̃c

v ∈
R256×256×3, with v = 1...24.

In addition, and during the data augmentation process, we
compute the pixel Normalized Polar Coordinates for each
generated view X̃c

v . The goal of these coordinates is to
provide invariance against shifts, rotations, changes in size and
even irregular shapes of the lesions in subsequent processing
steps. To do so, we transform the original Cartesian pixel
coordinates (xi, yi) into the normalized polar coordinates
(ri, θi), where ri ∈ [0, 1] and θi ∈ [0, 2π) stand for the
normalized ratio and angle, respectively. The process that
computes this transformation is as follows: first, the binary
mask of the lesion is approximated by an ellipse with the
same second-order moments. Then, we learn an affine matrix
A that transforms the ellipse into a normalized (unit ratio)
circle centered at location (0,0). Finally, we map each pixel in
the original lesion with its projection in the normalized circle,
and obtain the normalized polar coordinates as the ratio and
angle computed from the projected pixel coordinates. Figure
4 shows an example of a rotated and cropped view of a lesion
and its corresponding normalized polar coordinates.

D. Considering non-visual lesion meta-data in the diagnosis

As we will describe in detail in Section VI, the proposed
model has been used to participate in the 2017 ISBI Challenge
on Skin Lesion Analysis Towards Melanoma Detection. In

(a) (b) (c)

(d) (e) (f)

Fig. 3. Illustration of the process of data augmentation: a) Original image, b)
rotated Image, c) largest inner rectangle containing pixels of the lesion, d-f)
3 square croppings containing partial views of the lesion.

Fig. 4. Example of a rotated and cropped view of a lesion and its
Normalized Polar Coordinates. (Left) View of the lesion. (Middle) Values
of the normalized ratio. (Right) Angle.

this challenge, additional valuable meta-data was also provided
with the images that can help automatic systems to improve
their performance, namely: a) approximate age of the patient,
rounded to 5 year intervals (or ‘unknown’ if not available), and
b) sex, containing the gender of the patient (or ‘unknown’ if
not available).

Hence, we have complemented the outputs of the CNN-
based system with the score provided by a Support Vector
Machine (SVM) [31] working on external non-visual meta-
data. Since both age and sex variables are discrete, we have
transformed them into numerical inputs following this process:
for each considered category c and the meta-data M , we have
modeled the corresponding likelihoods p(M |c) as random
discrete variables. Then, given a new clinical case, the input
to the SVM was computed by evaluating the likelihood of the
current sample.

Furthermore, we have also included an additional input
feature computed as the relative area of the lesion with respect
to the total size of the image.

As shown in Figure 1, a probabilistic output of this SVM
is then factorized with the output of the Diagnosis Network
to provide the final diagnosis Yc of the system.

IV. DERMOSCOPIC STRUCTURE SEGMENTATION
NETWORK (DSSN)

The goal of the Dermoscopic Structure Segmentation Net-
work is the following: given an input view of the lesion X̃c

v
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it aims to provide a segmentation considering a pre-defined
set of dermoscopic features that correspond with global and
local structures of special interest for dermatologists in their
diagnosis.

A. Considered Dermoscopic Structures
In this work we have considered a set of eight structures:
1.- Dots, globules and Cobblestone pattern [32, pp. 15-

17]: although different, they have been fused into one for
the purpose of the system development due to their visual
similarities. These patterns consist of a certain number of
round or oval elements, variously sized, with shades that can
be brown and gray-black. In the case of cobblestone structures,
they are usually larger, more densely grouped and somewhat
angulate. In general, they are often located in lesion areas that
are growing. While an even spatial distribution with regular
size and shape is associated with benignity, various sizes and
shapes, or irregular or localized distribution usually occur in
melanoma. Depending on their relative extent in the lesion
area, these features can be either identified as local structures
or global patterns.

2.- Reticular pattern and pigmented networks [32, pp. 10-
13]: they cover most parts of certain lesions. They look as grids
of thin brown lines over a light brown background and are
quite common in melanocytic lesions. If globally distributed,
this structure is related to benign lesions. However, variations
in size and form are indicative of malignancy. Depending on
their relative extent in the lesion area, these features can be
either identified as local structures or global patterns.

3.- Homogeneous areas [32, pp. 14-15]: these areas are
diffuse, with brown, grey-black, grey-blue or reddish-black
shade, where there is no other local feature that can be
recognized. A globally distributed pattern of bluish hue is
the hallmark of the blue nevus. With other shades, it may be
present in several types of lesions, such as Clark-nevi, dermal
nevi or nodular and metastatic melanomas. Depending on their
relative extent in the lesion area, these features can be either
identified as local structures or global patterns.

4.- Regression [32, pp. 20-21]: these structures are generally
well-defined white and/or blue areas that appear when the
immune system has attacked the lesion. White areas resemble
a superficial scar, and blue areas may appear as diffuse blue-
gray areas or peppering, which is an aggregation of blue-grey
dots. Regression areas are always considered local structures.

5.- Blue-white veil [32, pp. 22-23]: a region of grey-blue to
whitish-blue blurred pigmentation, correlated with pigmented
network disorder (globules or streaks) and highly indicative
of melanoma. This structure is always considered local in our
annotations.

6.- Streaks [32, pp. 17-18]: are black or light to dark brown
longish structures of variable thickness, not clearly combined
with pigmented networks, and easily observed when located at
the periphery of the lesion. In general, they tend to converge
to the center of the lesion. An even, radial distribution of the
streaks around the border of the lesion is characteristic of Reed
nevus. However, an asymmetric or localized distribution of
streaks suggests malignancy. This structure is always local,
and spatially localized on the lesion borders.

7.- Vascular structures [32, p. 23]: they are homogeneous
areas with vessels. Depending on their shape, they may be
a clear sign of malignancy. While abundant and prominent
comma vessels often exist in dermal nevi, some other vascular
patterns, such as arborizing, hairpin or linear irregular ones,
are more frequent in melanomas. These structures are always
considered local in our annotations.

8.- Unspecific pattern: we group in this category those parts
of the lesion that cannot be assigned to any of the previous
structures. No direct diagnosis implication can be inferred
from it. Nevertheless, it is more often related to melanoma, or
at least it suggests that the lesion must be carefully explored.
Depending on its relative extent in the lesion area, these feature
can be either identified as local or global in our annotations.

B. A weak learning approach for segmentation
The main challenge to develop the DSSN is the annotation

of the training dataset. A traditional supervised approach
would require to provide a ground truth pixel-wise segmenta-
tion for each training image. This kind of strong annotation
is often hard to obtain as it demands a huge effort from the
dermatologists to manually outline the segmentations of the
structures. Alternatively, providing weak image-level labels
indicating only which dermoscopic structures are present in
a lesion is much easier for dermatologists and becomes more
affordable. Henceforth, following this alternative approach, we
asked dermatologists of a collaborating medical institution, the
Hospital Doce de Octubre in Madrid, to annotate the ISIC
2016 training dataset [4] with the presence or absence of
the 8 aforementioned dermoscopic structures. In particular,
we asked them to provide one label L(s) per structure s and
clinical case: L(s) = 0 if the structure is not present, L(s) = 1
if it takes up just a local area of the lesion (local structure),
L(s) = 2 if it is present and dominant enough to be considered
a global pattern in the lesion.

Given this weakly-annotated dataset, we have developed a
segmentation network based on the method described in [33],
where the authors introduced a Constrained Convolutional
Neural Network for weakly supervised segmentation. For the
sake of completeness we will include here some equations
of the original model that accommodate the extensions and
modifications for our particular scenario. For an in-depth
discussion and derivation of these equations, the interested
reader is referred to the original paper [33].

To keep the notation simple, we omit the image index in the
following paragraphs. Let us consider the dermoscopic struc-
ture segmentation as a pixel-wise labeling problem in which
each pixel i in the lesion area is labeled as belonging to a
particular structure si, s = 1...P = 8 or to a background class
(s = 0). Passing the input image through the segmentation
CNN will produce a spatially reduced score map fi(si; θ)
(64 × 64 in our case) at its top layer, where θ represents
the set of parameters of the CNN. Applying a parametric
softmax over the network scores, we can model the label of
each pixel location i as a probabilistic random variable with
value qi(si|θ):

qi(si|θ) =
1

Zi
exp(γfi(si|θ)) (1)
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Here si is the random variable that represents the la-
bel (dermoscopic structure) at the location i and Zi =∑
s=0...P=8 exp(γfi(s|θ)) is the partition function at the lo-

cation i. The utility and appropriateness of the parameter
γ, which was not included in the original model, will be
discussed later on.

At this point, we have introduced another modification to
the original model. Our problem is highly unbalanced and,
whereas structures as dots/globules or reticular patterns are
very common, others like blue-white veil or regression patterns
are less frequent. Moreover, the frequency of a structure does
not correspond with its impact on the diagnosis, and less
frequent patterns are in general more indicative of malignant
lesions. We have observed that learning the model directly
from the data leads to solutions that focus more on the correct
segmentation of the most frequent patterns, while fail in those
less-frequent but more meaningful patterns. To avoid such a
situation, we have introduced weights that control the influence
of the different structures in the learning process and produce
more balanced segmentations. Hence, considering marginal
independence, the probability distribution on an image can be
factorized as:

Q(S|θ) =
N∏
i

qi(si|θ)wi (2)

where N is the total number of pixels in the spatially-reduced
image generated by the CNN. The weights wi might simulate
the repetition of a sample in the training data, thus giving it
more influence over the learned model. Although these weights
can control the influence of each pixel i in the image, in
our case, the value is the same for all pixels in the image
wi = w and represents a measure of the lesion abnormality,
which depends on the weak ground-truth labels indicating the
presence or absence of each dermoscopic structure. In fact,
this weight w is inversely proportional to the likelihood of
the present structures; if p+(s) is the probability that a lesion
contains the structure s, we compute w as:

w =
1

P

P∑
s=1

1[L(s) > 0]p−(s) + 1[L(s) = 0]p+(s) (3)

where p−(s) = 1 − p+(s), and 1[·] is an indicator function
which is evaluated only when the inner condition is satisfied.

Given the probability distribution of an image stated in
(2), the constrained CNN optimization for weakly-supervised
segmentation proposed in [33] is:

find θ

subject to A
−→
Q ≥

−→
b (4)

where
−→
Q is the vectorized form of the network output Q(S|θ),

and A ∈ RK×PN and
−→
b ∈ RK define K linear constraints

over the output distribution Q. Since this problem is not
convex with respect to the network parameters θ, the authors
defined a variational latent probability distribution P (S) over
the semantic labels, which is independent of the CNN param-
eters θ, applied the constraints to this new distribution rather
than to the original network output Q(S|θ), and enforced
P (S) and Q(S|θ) to model the same probability distribution

by minimizing the Kullback-Leibler divergence between them.
The resulting formulation becomes a Lagrangian optimization
problem and gives rise to the following update equation:

pi(s) =
1

Zi
exp(γfi(si; θ) +ATi,siλ) (5)

where λ ≥ 0 are the dual variables introduced in the optimiza-
tion, and Zi =

∑
s exp(γfi(s; θ)+ATi,sλ) is the local partition

in location i. Additionally the final loss and its gradient needed
by the optimization become:

L(θ) = −
∑
i

∑
si

wipi(si) log qi(si|θ) (6)

∂L(θ)

∂fi(si)
= γwi [qi(si|θ)− pi(si)] (7)

The presence or absence of a dermoscopic structure, as
well as additional cues about its size (global, local) or its
location (borders, center) within the lesion, lead to particular
constraints in the model. These constraints are applied over the
accumulated probability P (s) =

∑
i pi(s|θ), computed over

all pixel locations in the segmentation map. In contrast to the
original formulation in (4), we can now apply the constraints
to the latent distribution A

−→
P ≥

−→
b , considering the following

cases:

• Absent structure: If a dermoscopic structure s is not
present in an image, we impose one constraint that acts as
an upper bound over the accumulated probability:

N∑
i=1

pi(s) ≤ 0 (8)

• Global structure: If a dermoscopic structure s is consid-
ered as a global pattern, we impose one constraint acting as a
lower bound over the accumulated probability P (s), enforcing
that a minimum area of the lesion corresponds to that structure:

ls ≤
N∑
i=1

pi(s) (9)

Here ls has been set to ls = 0.5N , thus requiring that at least
50% of pixels in the lesion belong to that structure.
• Local structure: If a structure s is local, we impose

two constraints acting as lower and upper bounds over the
accumulated probability P (s), respectively:

ls ≤
N∑
i=1

pi(s) ≤ us (10)

where ls = 0.10N and us = 0.5N , are the lower and upper
bounds.
• Spatially localized structures: since some of the structures

tend to appear in particular locations of the lesion, we can
enforce our model to learn this dependency. This is the case,
for example, of the streak pattern, which only appears in the
borders of the lesion. Hence, considering that the location of
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a dermoscopic feature is restricted to certain region R, and
defining R̄ as its complement, we impose two constraints:∑

i∈R̄

pi(s) ≤ 0 (11)

ls ≤
∑
i∈R

pi(s) (12)

where ls = 0.5NR, being NR the number of pixels in
region R. We define the region R using the Normalized Polar
Coordinates introduced in Section III-C, which allows us, for
example, to define ring-shaped areas modeling the outer part
of a lesion.

Once we have defined the constraints, we can discuss the
role of the parameter γ in the softmax function (see eq.
(1)). We have observed that using a simple non-parametric
softmax function leads to situations in which constraints over
local structures were often obeyed by simply assigning some
residual probability to every pixel in the segmentation map.
This residual probability is not enough to assign any pixel to
the local structure (they show higher probabilities for other
structures), but allows for fulfilling the constraints over the
accumulated probability. From our point of view, this is an
undesired behavior since what one would like to have instead
is a small region of pixels with high probabilities of belonging
to the corresponding local structure. In other words, we prefer
pixels that are clearly associated with a particular class, as
long as they produce an actual image segmentation, rather
than pixels with some residual probability for each category.
To address this issue, we use values of γ ≥ 1 so that we can
control how the softmax approximates the max function while
it remains differentiable. In our case, we have used a value of
γ = 2.

We have implemented the DSSN taking the well-known
resnet-50 [13] as initialization, removing the top layers, and
using the ISIC 2016 training dataset [4] and the described
constrained optimization with weak annotations. This module
produces, for each view v of a clinical case c, a tensor
Scv ∈ R64×64×8 that contains the 8 probability maps of the
considered structures.

To sum up, we have extended the original approach in
[33] with three contributions: we have introduced a parametric
softmax that helps to model the problem constraints preventing
certain malfunctions; we have incorporated instance weights to
the problem statement so that we can deal with the unbalanced
nature of labels; and, finally, we have extended the set of
constraints by adding one new family that allows us to take
advantage of the prior knowledge about the spatial location of
structures in the lesion.

In Figure 5 we show some examples of the segmentation
maps generated by the DSSN. Let us note that, just to provide
a simplified visualization in this figure, we have transformed
the tensor Scv containing eight probabilistic maps, into a hard
segmentation in which each pixel has been assigned to the
most likely category. However, no spatial post-processing tech-
niques (such as Markov Fields or other smoothing algorithms)
have been applied.

Fig. 5. Three illustrative results of the Dermoscopic Structures Segmentation
Network. Top row: original images. Bottom row: segmentations. Colors
represent dermoscopic structures: brown is dots/globules, mustard is retic-
ular pattern/pigmented networks, green is homogeneous, grey is hypopig-
mented/regression areas, and blue is vascular structures. It is worth noting
that, for the sake of easy visualization, each pixel has been assigned to the
most probable category.

V. DIAGNOSIS NETWORK (DN)

The Diagnosis Network (DN) gathers information from the
previous modules and generates a diagnosis for each clinical
case.

As in the previous module, we have also taken the resnet-
50 [13] as a basis, which uses residual layers to avoid the
degradation problem when more and more layers are stacked
to the network. When applied to our 256x256-pixel images,
the last convolutional block (res5c) of this network produces
a tensor Tc ∈ R8×8×2048 containing the scores of high-
level latent concept detectors (e.g. in Imagenet, the dataset
for which it was originally designed, those were 2048 latent
visual concepts).

In the original network, an average pooling layer trans-
forms this tensor into a single-value per channel and image
Ts ∈ R1×1×2048, which is followed by a fully connected
layer and a softmax that generates the vector containing the
probabilities of the considered visual concepts. Hence, the goal
of the average pooling is to fuse detections at various locations
of the input image and to generate a unified score for each
latent high-level concept.

In our approach, we have modified the structure of the top
layers of the network, giving rise to the pipeline illustrated
in Figure 6. In the following sections, we will first introduce
the structure of the top layers in the DN and, then, we will
provide a detailed description of those blocks that have been
specifically designed to work with dermoscopic images of skin
lesions.

A. Overview of the DN
As shown in the Figure 6, we have introduced several blocks

to generate a final diagnosis Y cv for each considered view of a
clinical case. Compared to the original resnet-50, we first apply
a Modulation Block over the outputs of the convolutional res5c
layer. This block, described in Section V-B, aims to modulate
the previous outputs using the probabilistic segmentation maps
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Fig. 6. Processing pipeline of the Diagnosis Network. The outputs of layer res5c of the original resnet-50 are modulated by the segmentation maps coming
from DSSN, providing an extended set of channels. These channels, after batch normalization and ReLU activation function, are passed through a 3-branch
processing pipeline that analyzes the presence of visual patterns, their spatial location, and the asymmetry of the lesion, respectively, to generate the diagnosis.

provided by DSSN. As explained below, this block multiplies
the total number of channels or latent visual patterns by 9,
which goes from 2048 to 18432. Next, the Modulation Block
is followed by a Batch Normalization and non-linear ReLU
activation (Rectified Linear Unit) layers. Finally, rather than
just applying the Average Pooling + Fully Connected approach
as in the original resnet-50, we have subdivided the pipeline
into three parallel processing branches:

1) Branch 1: the original pipeline with an average pooling
(8x8 in our case), followed by a fully connected layer (FC1).

2) Branch 2: it performs an average normalized polar pool-
ing (see section V-C for further details) (R×Θ;R = 3,Θ = 8)
followed by a fully connected layer (FC2). This branch pro-
vides a spatially discriminant analysis of the lesion.

3) Branch 3: it follows the previous polar pooling, estimates
the asymmetry of the lesion (see Section V-D for a complete
description), and applies a fully connected layer (FC3) over
the asymmetry measures.
The outputs of these three branches are then linearly combined
using a Sum Block, and the class-probabilities are computed
using a softmax. Finally, in order to generate a unified final
output for each clinical case Yc, we consider independence
between views leading to a factorization:

Yc =

V∏
v=1

Y cv (13)

B. Modulation Block
The goal of the Modulation Block is to incorporate the

segmentations provided by DSSN to the diagnosis process.
To do so, this block fuses the structure segmentation maps
described in Section IV-B with the outputs of the previous
layer in the CNN.

In particular, if the output of the previous layer is a tensor
x ∈ RM×N×O, where M×N are the dimensions of the output
and O is the number of output channels, and s ∈ RM×N×P is
a segmentation map that has been previously re-sized to match
the feature map, the output of this module is an extended
and modulated feature map y ∈ RM×N×OP . To compute
this output, we modulate the o-th channel xo with the s-th
segmentation map ss, producing a modulated channel yk:

yk = xi � ss, i = 1...O, s = 1...P, k = 1...OP (14)

Since the segmentations computed by DSSN are fixed, this
module has no parameters to be optimized during the training
phase. Hence, the backpropagation process only requires the
derivative with respect the data:

∂z

∂xo
=
∑
k∈Ko

∂z

∂yk
� sk (15)

where Ko corresponds to all the modulated channels k
generated from the channel o, and sk is the corresponding
modulating map for that k.

The application of this module to our diagnosis network has
been adapted as follows: it has been added to the network just
after the res5c layer of the original resnet-50 [13]. Hence,
we modulate O=2048 channels using the probabilities of
the P=8 segmentation maps of local and global structures
described in Section IV-A. In addition, we also concatenate
the original input channels to the modulated ones, resulting
into an extended set of O(P+1) channels (18432 in our case).

C. Polar pooling
This block aims to perform pooling operations (average

or max pooling), but instead of doing them over rectangular
spatial regions, these operations are done over sectors defined
in polar coordinates. Hence, for a given number of rings R
(with r ∈ [0, 1]) and angular sectors Θ (angles θ ∈ [0, 2π)),
this block transforms an input x ∈ RM×N×O into an output
y ∈ RR×Θ×O, where O is the number of channels.

Furthermore, in order to deal with lesions of irregular shape,
we use the normalized polar coordinates described in Section
III-C. Since, depending on the particular shape of a lesion and
the size of the tensor being pooled, some combinations (r, θ)
may not contain pixels within the lesion, we can also define
overlaps between adjacent sectors to improve the smoothness
of the outputs. Moreover, we use a non-uniform radius quan-
tization in order to generate fixed-area rings that contain the
same number of pixels in the hypothetical case of an ideally
circular lesion. To that end, the k − th ring is defined as:√

k − 1

R
≤ r <

√
k

R
(16)

for k = 1...R. Given the proposed normalized polar coordinate
system, the equations needed to perform the forward and
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backwardstepsintheinferenceprocessdonotdifferfrom
thoseonesofaregular maxoraveragepoolingblockin
Cartesiancoordinates.Furthermore,itisworthnotingthat,
oncethisblockisappliedanddataisconvertedintopolar
coordinates,nomoreconvolutionallayerscanbeappliedasthe
spatialrelationshipsbetweencontiguousvaluesintheoutput
matrixhavebeenredefined(e.g.consideringthatcolumnsin
thedatamatrixrefertoangles,thefirstandlastcolumns
areadjacentintheangularspace).Forthatreason,inour
approach,thismoduleisfollowedbysomeblocksthatare,
eitherfullyconnected,orspecificallydesignedtoworkwith
polarcoordinates(e.g.theAsymmetryblock).

D.AsymmetryBlock

Melanomastendtogrowdifferentlyalongeachdirection,
becomingmoreasymmetricthanbenignlesions.Thisiswhy
symmetryispresentinavarietyofdiagnosisalgorithms,such
astheABCDruleofdermoscopy[21].Thesymmetryrule
requiresfindingtheaxisofmaximumsymmetryaccordingto
somecriteria(e.g.shape,color),anditsperpendicular.Indoing
so,thelesionislabeledbydermatologistseitherassymmetric
inoneortwoaxes,orasasymmetric.
Ourasymmetryblockcomputesmetricsthatevaluatethe

asymmetryofalesionwithrespecttovariousaxes.Inpartic-
ular,givenapolardivisionofthelesionintoR×Θsectors,
wecomputetheasymmetryforaxesalignedwiththeΘ/2
anglesintherange[0,π).Todoso,ourapproachfolds
thelesionovereachangleθandcomputestheaccumulated
squaredifferencebetweencorrespondingsectors.Hence,for
agiveninputx∈RR×Θ×O,thismodulegeneratesanoutput
y∈R1×Θ×O asfollows:

yθk,o=
1

RΘ

R

i=1

Θ/2

j=1

xri,θk+j 1,o−xri,θk j,o
2

(17)

where,incasetheangleindexθjbecomesj <=0itis
substitutedbyΘ−j.
Duringback-propagation,thegradientsneededbythe
stochasticgradientdescentalgorithmare:

∂z

∂xri,θj,o
=
2

RΘ

Θ/2

k=1

∂z

∂yθk,o
ϕ(ri,θj,θk) (18)

where:

ϕ(ri,θj,θk)=
xri,θj−xri,θk j

, θj∈[θk,θk+π)

xri,θk j
−xri,θj,otherwise

(19)

E.Detailsaboutlearningandevaluationprocesses

Inthissectionweprovidesomeusefuldetailsaboutthe
learningprocessofDN.AsmentionedinSectionV,wehave
takentheoriginalresnet-50asinitializationandfine-tunedthe
networkusingourowntrainingdata. Whennothingelseis
specified,allthenewlayersinthenetworkareinitializedusing
weightscomputedusingXavier’smethod[34].
Furthermore,duetothehighdegreeofexpressivenessof

branches2and3withrespecttothefirstbranch,wehave
observedthattrainingthewholesystematatimewasproneto

overfitting.Hence,instead,wehavefirsttrainedamodelusing
onlythefirstbranchwithalearningrateofLr=10−4and
aweightDecayofWd =10−4.Onceacoarseconvergence
isreached,wehaveaddedtheothertwobranches,frozenall
layersupto(andincluding)theModulationBlock,initialized
weightsforbranch2and3tozero,andlearnedtheweights
oftheupperlayersusingthefollowinglearningrates:

•Forbranch1theoriginallearningrateLr1=10
−4and

weightDecayWd=10−4.
•Forbranches2and3theoriginallearningrateandweight
decaysaredividedormultipliedbythetotalnumberofinput
spatialneuronsinthefullyconnectedblock,respectively.This
strongerregularizationandslowerlearningratepreventsthese
branchesfromgettingmorerelevancethantheoriginalonedue
totheirexpressiveness,andthereforeminimizesthelikelihood
ofoverfitting.

ThecodethatimplementsDermaKNetisavailableonline3.

VI.EXPERIMENTALSECTION

A.DatasetsandExperimentalSetup

DermaKNethasbeenassessedusingtheofficialdatasetof
the2017ISBIChallengeonSkinLesionAnalysisTowards
MelanomaDetection4[5].Thischallengeconsistsofthree
differentparts:1)LesionSegmentation,2) Detectionand
LocalizationofVisualDermoscopicFeatures/Patterns,and3)
DiseaseClassification. Wefocusonpart3,beingourgoal
theautomaticdiagnosisofdermoscopicimagesintothree
differentcategories:1)Nevus:benignskintumor,derived
frommelanocytes(melanocytic),2)Melanoma:malignantskin
tumor,derivedfrommelanocytes(melanocytic),and3)Sebor-
rheicKeratosis:benignskintumor,derivedfromkeratinocytes
(non-melanocytic).Malignancydiagnosisdatawereobtained
fromexpertconsensusandpathologyreportinformation.
Theofficialdatasetcontains2750dermoscopicimagesgath-
eredfromthedailyclinicalpracticeofawiderangeofmedical
centers,thusvaryinginresolutionandcapturingdevicesand
conditions.Thedatasethasbeensplitintotraining,validation
andtestsetswith2000,150,and600images,respectively.
Theproportionsoftheclassesinthetrainingdatasetare
thefollowing:374melanomas,254seborrheickeratosis,and
1372benignnevi.Similarproportionswerefoundinthetest
dataset,butnotinthevalidationdataset.Besidestheimages,
additionalnon-visualmeta-dataabouttheclinicalcasessuch
astheapproximateageandsexofthepatientwereprovided
whenavailable.
Inadditiontotheofficialdataset,wehavealsoconsidered
twootherexternalresourcesfortraining,namely:

•AdatasetobtainedfromtheEDRAInteractiveAtlasof
Dermoscopy[35],withimagesgatheredwiththeobjectiveof
providingapanoramicviewofskinlesionsdiagnosisusing
dermoscopy.ImagesweresavedinJPEGformatwithalmost
uniformsizes(768x512),withgroundtruthlabelsdetermined
byhistopathologicaldiagnosis,andno meta-dataprovided
withtheimagefiles.Itcontainsatotalsetof724melanocytic

3https://github.com/igondia/matconvnet-dermoscopy
4https://challenge.kitware.com/#challenge/583f126bcad3a51cc66c8d9a
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Fig. 7. AUC results for segmentation of dermoscopic structures. Our approach
(DSSN) is compared to the original CCNN [33]

lesions, 222 of them are melanomas and the remaining 502
are benign nevi.
• A dataset built from the ISIC archive [36], the global

repository that was used to generate the official challenge
datasets. By considering images belonging to any of the three
considered categories, we have found 2104 new images that
were not included in the official dataset of the challenge: 1606
nevi, 466 melanomas and 32 seborrheic keratosis.
In order to assess the performance of our approach, we have
used the same evaluation metrics proposed by the organizers of
the challenge. In particular, among all the considered metrics,
we will focus on:
• Area Under Curve (AUC): the AUC is computed in-

dependently for two different binary classification problems:
1) melanoma vs rest, and 2) seborrheic keratosis vs rest.
In addition, the average AUC of the two problems is also
provided. AUC was considered the main evaluation metric in
the challenge and served to rank the official submissions and
select the winning approaches.
• Specificity evaluated at a sensitivity of 95% (SP95): this

complementary metric evaluates how automatic methods can
filter out benign lesions, delivering to dermatologists only
those that become good candidates to be malignant. Hence, by
fixing a very high value on the sensitivity, we ensure that our
system minimizes the number of non-detections, and assess its
ability to reduce the clinical effort of dermatologists, which
would have a high impact in their daily clinical practice.

The experiments in this section are organized as follows:
first, we assess the performance of DSSN, then we evaluate the
influence of each individual proposed block in the diagnosis
network. Finally, the optimal configuration is evaluated in
comparison to the official submissions of the challenge.

B. Evaluation of the Dermoscopic Structure Segmentation
Network

Prior to the analysis of the segmentation network, which is
the final goal of this subsystem, we would like to provide
an assessment of the DSSN module. To that purpose, we
have subdivided our 2016 ISBI challenge training dataset
with weak annotations into train and validation sets. Figure 7
shows a comparison between the original CCNN [33], which
has served as a baseline for our method, and our approach

TABLE I
A COMPARISON BETWEEN SEVERAL VERSIONS OF DERMAKNET AND THE

BASELINE. AUC IS GIVEN FOR MELANOMAS VS REST (MEL AUC),
SEBORRHEIC KERATOSIS VS REST (SK AUC), AND AVERAGE (AVG AUC).

No Method Mel AUC SK AUC avg AUC
1 Resnet-50 [13] 83.1 91.8 87.4
2 Modulation + Branch 1 83.4 92.5 88.0
3 Modulation + Branches 1-3 83.6 92.7 88.2
4 (3) + Test Data Aug. 84.8 94.6 89.7
5 (4) + meta-data 85.9 95.8 90.8

including spatially localized structures, parametric softmax and
instance weights that model lesion abnormality in training. Let
us note that for the baseline CCNN we have considered three
weak annotations (absent, local and global) using the same
parameters as in our solution. Results are given in terms of
AUC computed at image level, by accumulating the probability
of the considered dermoscopic features over the pixels in the
lesion. We can see in the figures that our proposal improves
the performance of the baseline for some of the structures,
specially on those that are spatially localized (e.g. streaks)
or less frequent in the dataset (e.g. streaks and blueveil),
in both cases as a consequence of our extensions in the
model (spatially localized structures and training weights). In
average, we are getting an improvement of 2.5 in AUC with
respect to the baseline.

C. Assessment of the proposed blocks in the automatic diag-
nosis system

In this set of experiments, we have assessed how the
different blocks designed for our system help to improve the
performance of the diagnosis. Although during the preparation
of the challenge we have used the train and validation sets to
make decisions about the system configuration, here we have
preferred to show the results over the test set (see Table I).
The rationale behind is that, as we have already mentioned,
the validation dataset follows a particular data distribution,
with different proportions of melanoma, keratosis and benign
nevu than those found in the training and test sets. Hence,
results in validation dataset, although show similar behaviors,
are different in absolute terms and less meaningful for the
analysis. In addition, it should be mentioned that these models
have been trained using only the official 2017 ISBI training
set.

Table I shows the results of this experiment. Let us note
that, unless specified, the data augmentation described in
section III-C is only performed over the training data. The first
evaluated method is the original resnet-50 [13], which has been
fine-tuned using our training data, and becomes the baseline
algorithm in the comparison. The second approach substitutes
the top layers in the original network by our Modulation
Block (sec. V-B) followed by the regular Branch 1, and shows
that incorporating the dermoscopic segmentations provides an
absolute improvement of 0.60 in terms of average AUC. When
we further incorporate the multi-branch processing with spatial
and asymmetry analysis, we gain an additional increment
of 0.2 in average AUC, which, although not very notable,
is still valuable. By applying data augmentation also to the
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test samples and fusing the results using the factorization
introduced at the end of Section V-A, we get a quite significant
additional improvement of 1.5 in average AUC. From our
point of view, this improvement comes from the following
fact: the inner rectangles during data augmentation remove
the non-lesion black areas at the expense of also losing some
areas of the lesion. This leads to training images that show
partial views of the lesion, which requires to perform the
same process for the test images in order to establish fair
comparisons between data samples. Finally, the full system
incorporating all the previous blocks as well as the score of
a SVM classifier over the non-visual meta-data (see section
III-D) achieves the best results, with an additional gain of 1.1
in average AUC. Hence, all these results demonstrate how each
proposed extension enhances the quality of the diagnosis.

D. Comparison with the state-of-the-art

In this section we assess the performance of DermaKNet
(version 5 in Table I) trained over an extended dataset con-
taining both the official 2017 ISBI Challenge train dataset and
the two external resources. In Table II we show a comparison
between our method and the top 5 performing methods among
the 23 official submissions to the challenge.

It is worth noting that we have included two versions of
DermaKNet. Our official submission to the challenge, denoted
as DermaKNet (Official) was trained using the official training
dataset and the EDRA external resource and shows some
minor differences with respect to the model described here
(the interested reader is referred to [38] for the corresponding
description). Our current proposal, denoted as DermaKNet
(Current), in contrast, was trained using also images from the
ISIC archive.

Considering the official submission and using the AUC,
DermaKNet ranked first in the category of Seborrheic Ker-
atosis vs rest, and fourth in Melanoma vs rest, achieving a
global second position in the challenge. However, if we further
analyze the SP95 results, that account for the specificity of the
diagnosis at a 95% sensitivity, our model clearly outperforms
the rest of the approaches in both categories. As we have
already mentioned, this probably represents the most realistic
scenario of application, in which CAD systems are used to
filter out benign cases, thus reducing the number of lesions
that require care from dermatologists.

However, our current implementation achieves even better
results than our previous one. Again, using AUC as the main
performance metric, it outperforms all the official submissions
in the Seborrheic Keratosis vs rest problem, and now also in
the average of the two categories. Furthermore, our results
for melanoma detection are now very close to those of the
winning approach in the category. In addition, considering
the SP95 metric, our method clearly becomes the state-of-
the art in the considered three problems (any of the two
tasks and average). Hence, these results completely validate
our approach and demonstrate the utility of incorporating
intuitions from dermatologists into the CNN structure.

E. An example of an interpretable diagnosis

The advantage of incorporating the intuitions of dermatolo-
gists into the processing pipeline of a CNN is not restricted to
the enhancement of the system performance, but also provides
additional valuable information regarding the clinical case that
might help medical staff in their diagnosis. Figure 8 shows
two examples of a system output built using DermaKNet: we
can provide information about the dermoscopic features, not
only about their location in the lesion, but also about their
contribution to the final diagnosis. In particular, the bottom-
center diagram shows the accumulated contribution to the
diagnosis score from each particular dermoscopic structure s
(see eq. (14)). For that purpose, given the diagnosed class, we
compute the non-probabilistic class-score of each dermoscopic
feature s as the output of the Sum Block in Fig. 6 in which
only those channels k (k = 1...18432) that correspond with the
structure s are considered in the computations. After applying
a ReLU that removes negative (inhibiting) scores, we compute
the final relative contribution by applying a normalization that
ensures a total score of 1 over all the dermoscopic structures.
Furthermore, the bottom-right diagram shows a normalized
(for visualization enhancement) measure of the per-angle
accumulated symmetry over the k channels modulated by
each dermoscopic structure s. This symmetry is computed as
follows: we consider the accumulated output of the asymmetry
block for each angle yθk =

∑
o yθk,o (see eq. (17)), and then

perform two consecutive normalizations: the first one adapts
the asymmetry values to the lesion content dividing yθk by
the accumulated energy of the input e =

∑
r,j,o x

2
ri,θj ,o

(see
eq. (17)); and the second is a max-min normalization that
ensures a final asymmetry in the range [0,1] and improves
visualization. Finally, symmetry values are computed as 1-
asymmetry.

In addition to gaining more insight on the automatic diag-
nosis, this information might also become the basis for other
end-user applications, such as e-learning tools to help in the
training of new specialists.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have introduced DermaKNet, a CAD
system for the diagnosis of skin lesions that is composed of
several CNNs, each one devoted to a specific task: lesion-skin
segmentation, detection of dermoscopic features, and global
lesion diagnosis. Our goal through the whole system is to
incorporate the expert knowledge provided by dermatologists
into the decision process, overcoming the traditional limitation
of deep learning regarding the lack of interpretability of the
results. In order to achieve a seamless integration between
CNNs and this expert information, we have developed several
novel processing blocks.

We have assessed our system in the challenging dataset
used in the 2017 ISBI Challenge on Skin Lesion Analysis
Towards Melanoma Detection, in the task of automatic di-
agnosis of melanoma and seborrheic keratosis. Our results
prove that modeling expert-based information enhances the
system performance and achieves very competitive results.
In particular, the last version of our model ranks first in
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TABLE II
A COMPARISON BETWEEN DERMAKNET AND THE TOP FIVE PERFORMING OFFICIAL SUBMISSIONS TO 2017 ISBI CHALLENGE ON SKIN LESION

ANALYSIS. AUC AND SP95 ARE GIVEN FOR MELANOMAS (MEL) VS REST, SEBORRHEIC KERATOSIS (SK) VS REST, AND AVERAGE (AVG).

Method Mel AUC SK AUC avg AUC Mel SP95 SK SP95 Avg SP95
Matsunaga et al. [37] 86.8 95.3 91.1 36.6 78.4 57.5

DermaKNet (Official) [38] 85.6 96.5 91.0 40.4 82.4 61.4
Menegola et al. [39] 87.4 94.3 90.8 39.5 69.0 54.3

Bi17 et al. [40] 87.0 92.1 89.6 39.8 47.6 43.7
Yang et al. [41] 83.0 94.2 88.6 36.6 74.5 55.6

DermaKNet (Current) 87.3 96.2 91.7 46.0 84.3 65.2

(a) (b)

Fig. 8. Two examples of an interpretable system output generated with our approach: (a) Melanoma and (b) Seborrheic Keratosis. Each case contains 6
figures which represent (from top to bottom and left to right): original image and diagnosis, binary mask with lesion/skin, segmentation into dermoscopic
features, automatic diagnosis, contribution of each dermoscopic feature to the final diagnosis, symmetry measures by angle.

the Seborrheic Keratosis category and average AUCs, and
is very competitive in melanoma. Furthermore, our results
in Specificity at a 95% Sensitivity are clearly better than
those of the rest of the approaches, which makes our system
very suitable as an automatic filtering module reducing the
workload of dermatologists.

In addition to this gain in performance, we have also shown
that we can produce a more interpretable diagnosis on top
of our system. Looking at the outputs of those intermediate
blocks modeling intuitions from dermatologists, we can get
more insight about which dermoscopic features are influencing
the diagnosis, the lesion symmetry, and even the spatial
locations that support certain diagnosis.

The main lines of further research comprise the design of
new blocks implementing other aspects in the lesions that are
of interest for dermatologists, the development of segmentation
methods that account for other useful dermoscopic features,
and the exploration of novel ways of incorporating the der-
moscopic structures segmentation into the diagnosis process.
With respect to the latter, we will consider multi-task losses
[42], which allow for sharing processing layers in both tasks
and fusing segmentation and diagnosis networks into end-to-
end trainable architectures.
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[38] I. González-Dı́az, “Incorporating the knowledge of dermatologists to
convolutional neural networks for the diagnosis of skin lesions,” CoRR,
vol. abs/1703.01976, 2017. [Online]. Available: http://arxiv.org/abs/
1703.01976

[39] A. Menegola, J. Tavares, M. Fornaciali, L. T. Li, S. E. F. de Avila,
and E. Valle, “RECOD titans at ISIC challenge 2017,” CoRR, vol.
abs/1703.04819, 2017. [Online]. Available: http://arxiv.org/abs/1703.
04819

[40] L. Bi, J. Kim, E. Ahn, and D. Feng, “Automatic skin lesion
analysis using large-scale dermoscopy images and deep residual
networks,” CoRR, vol. abs/1703.04197, 2017. [Online]. Available:
http://arxiv.org/abs/1703.04197

[41] X. Yang, Z. Zeng, S. Y. Yeo, C. Tan, H. L. Tey, and Y. Su, “A
novel multi-task deep learning model for skin lesion segmentation and
classification,” CoRR, vol. abs/1703.01025, 2017. [Online]. Available:
http://arxiv.org/abs/1703.01025

[42] P. Kisilev, E. Sason, E. Barkan, and S. Hashoul, Medical Image
Description Using Multi-task-loss CNN. Cham: Springer International
Publishing, 2016, pp. 121–129. [Online]. Available: https://doi.org/10.
1007/978-3-319-46976-8 13



14

Iván González-Dı́az Iván González-Dı́az received
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