4 research outputs found

    Glycosphingolipid Binding Specificities of Rotavirus: Identification of a Sialic Acid-Binding Epitope

    No full text
    The glycosphingolipid binding specificities of neuraminidase-sensitive (simian SA11 and bovine NCDV) and neuraminidase-insensitive (bovine UK) rotavirus strains were investigated using the thin-layer chromatogram binding assay. Both triple-layered and double-layered viral particles of SA11, NCDV, and UK bound to nonacid glycosphingolipids, including gangliotetraosylceramide (GA1; also called asialo-GM1) and gangliotriaosylceramide (GA2; also called asialo-GM2). Binding to gangliosides was observed with triple-layered particles but not with double-layered particles. The neuraminidase-sensitive and neuraminidase-insensitive rotavirus strains showed distinct ganglioside binding specificities. All three strains bound to sialylneolactotetraosylceramide and GM2 and GD1a gangliosides. However, NeuAc-GM3 and the GM1 ganglioside were recognized by rotavirus strain UK but not by strains SA11 and NCDV. Conversely, NeuGc-GM3 was bound by rotaviruses SA11 and NCDV but not by rotavirus UK. Thus, neuraminidase-sensitive strains bind to external sialic acid residues in gangliosides, while neuraminidase-insensitive strains recognize gangliosides with internal sialic acids, which are resistant to neuraminidase treatment. By testing a panel of gangliosides with triple-layered particles of SA11 and NCDV, the terminal sequence sialyl-galactose (NeuGc/NeuAcα3-Galβ) was identified as the minimal structural element required for the binding of these strains. The binding of triple-layered particles of SA11 and NCDV to NeuGc-GM3, but not to NeuAc-GM3, suggested that the sequence NeuGcα3Galβ is preferred to NeuAcα3Galβ. Further dissection of this binding epitope showed that the carboxyl group and glycerol side chain of sialic acid played an important role in the binding of such triple-layered particles

    Mimicking DNA stretching with the Static Mode method: Shear stress versus transverse pulling stress

    No full text
    International audienceDNA sequencing using nanopores is closer than ever to become a reality, but further research and development still need to be done, especially to unravel the atomic-scale mechanisms of induced DNA stretching. At this level, molecular modeling and simulation are essential to investigate DNA conformational flexibility and its response to the forces involved. In this work, through a “Static Mode” approach, we present a directed exploration of the deformations of a 27-mer subjected to externally imposed forces, as it could be in a nanopore. We show how the DNA sugar-phosphate backbone undergoes the majority of the induced deformation, before the base pairing is affected, and to what extent unzipping initiation depends on the force direction
    corecore