13,090 research outputs found

    Ion structure factors and electron transport in dense Coulomb plasmas

    Full text link
    The dynamical structure factor of a Coulomb crystal of ions is calculated at arbitrary temperature below the melting point taking into account multi-phonon processes in the harmonic approximation. In a strongly coupled Coulomb ion liquid, the static structure factor is split into two parts, a Bragg-diffraction-like one, describing incipient long-range order structures, and an inelastic part corresponding to thermal ion density fluctuations. It is assumed that the diffractionlike scattering does not lead to the electron relaxation in the liquid phase. This assumption, together with the inclusion of multi-phonon processes in the crystalline phase, eliminates large discontinuities of the transport coefficients (jumps of the thermal and electric conductivities, as well as shear viscosity, reported previously) at a melting point.Comment: 4 pages, 2 figures, REVTeX using epsf.sty. Phys. Rev. Lett., in pres

    Nucleon-Nucleon Scattering in a Strong External Magnetic Field and the Neutrino Emissivity

    Full text link
    The nucleon-nucleon scattering in a large magnetic background is considered to find its potential to change the neutrino emissivity of the neutron stars. For this purpose we consider the one-pion-exchange approximation to find the NN cross-section in a background field as large as 1015G−1018G10^{15}\texttt{G}-10^{18}\texttt{G}. We show that the NN cross-section in neutron stars with temperatures in the range 0.1-5 \texttt{MeV} can be changed up to the one order of magnitude with respect to the one in the absence of the magnetic field. In the limit of the soft neutrino emission the neutrino emissivity can be written in terms of the NN scattering amplitude therefore the large magnetic fields can dramatically change the neutrino emissivity of the neutron stars as well.Comment: 21 pages, 5 figures, to appear in PR

    Unconventional magnetic phase separation in γ\gamma-CoV2_2O6_6

    Get PDF
    We have explored the magnetism in the non-geometrically frustrated spin-chain system γ\gamma-CoV2_{2}O6_{6} which possesses a complex magnetic exchange network. Our neutron diffraction patterns at low temperatures (TT ⩽\leqslant TNT_{\mathrm{N}} = 6.6 K) are best described by a model in which two magnetic phases coexist in a volume ratio 65(1) : 35(1), with each phase consisting of a single spin modulation. This model fits previous studies and our observations better than the model proposed by Lenertz etet alal in J. Phys. Chem. C 118, 13981 (2014), which consisted of one phase with two spin modulations. By decreasing the temperature from TNT_{\mathrm{N}}, the minority phase of our model undergoes an incommensurate-commensurate lock-in transition at T∗T^{*} = 5.6 K. Based on these results, we propose that phase separation is an alternative approach for degeneracy-lifting in frustrated magnets

    Facial structures for various notions of positivity and applications to the theory of entanglement

    Full text link
    In this expository note, we explain facial structures for the convex cones consisting of positive linear maps, completely positive linear maps, decomposable positive linear maps between matrix algebras, respectively. These will be applied to study the notions of entangled edge states with positive partial transposes and optimality of entanglement witnesses.Comment: An expository note. Section 7 and Section 8 have been enlarge

    Casimir elements from the Brauer-Schur-Weyl duality

    Full text link
    We consider Casimir elements for the orthogonal and symplectic Lie algebras constructed with the use of the Brauer algebra. We calculate the images of these elements under the Harish-Chandra isomorphism and thus show that they (together with the Pfaffian-type element in the even orthogonal case) are algebraically independent generators of the centers of the corresponding universal enveloping algebras.Comment: 19 page

    Resolving Exceptional Configurations

    Full text link
    In lattice QCD with Wilson fermions, exceptional configurations arise in the quenched approximation at small quark mass. The origin of these large previously uncontrolled lattice artifacts is identified. A simple well-defined procedure (MQA) is presented which removes the artifacts while preserving the correct continuum limit.Comment: Talk presented by E. Eichten at Lattice 97, Edinburgh(UK), July97. 6 pages, LaTeX, 1 table, 5 figure

    Tunnel magnetoresistance and interfacial electronic state

    Full text link
    We study the relation between tunnel magnetoresistance (TMR) and interfacial electronic states modified by magnetic impurities introduced at the interface of the ferromagnetic tunnel junctions, by making use of the periodic Anderson model and the linear response theory. It is indicated that the TMR ratio is strongly reduced depending on the position of the dd-levels of impurities, based on reduction in the spin-dependent ss-electron tunneling in the majority spin state. The results are compared with experimental results for Cr-dusted ferromagnetic tunnel junctions, and also with results for metallic multilayers for which similar reduction in giant magnetoresistance has been reported.Comment: 5 pages, 4 figures, 2 column revtex4 format, ICMFS 2002 (Kyoto

    Pole dynamics for the Flierl-Petviashvili equation and zonal flow

    Full text link
    We use a systematic method which allows us to identify a class of exact solutions of the Flierl-Petvishvili equation. The solutions are periodic and have one dimensional geometry. We examine the physical properties and find that these structures can have a significant effect on the zonal flow generation.Comment: Latex 40 pages, seven figures eps included. Effect of variation of g_3 is studied. New references adde
    • …
    corecore