9 research outputs found

    Monkeys mutant for PKD1 recapitulate human autosomal dominant polycystic kidney disease.

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) caused by PKD1 mutations is one of the most common hereditary disorders. However, the key pathological processes underlying cyst development and exacerbation in pre-symptomatic stages remain unknown, because rodent models do not recapitulate critical disease phenotypes, including disease onset in heterozygotes. Here, using CRISPR/Cas9, we generate ADPKD models with PKD1 mutations in cynomolgus monkeys. As in humans and mice, near-complete PKD1 depletion induces severe cyst formation mainly in collecting ducts. Importantly, unlike in mice, PKD1 heterozygote monkeys exhibit cyst formation perinatally in distal tubules, possibly reflecting the initial pathology in humans. Many monkeys in these models survive after cyst formation, and cysts progress with age. Furthermore, we succeed in generating selective heterozygous mutations using allele-specific targeting. We propose that our models elucidate the onset and progression of ADPKD, which will serve as a critical basis for establishing new therapeutic strategies, including drug treatments

    Watershed infarcts in a multiple microembolic model of monkey.

    Get PDF
    It has long been debated whether watershed infarcts are caused by hemodynamic or embolic mechanisms. In the present study, we investigated microembolic roles in the pathogenesis of watershed infarcts by examining MRI in a macaque monkey model of multiple microinfarcts. 50μm microbeads were injected into each internal carotid artery twice with a month interval. Monkeys (n=4) injected with 2250-2800 microbeads per unilateral side showed both cortical and internal watershed infarcts in the acute phase and atrophic changes with microbleeds in the chronic phase. These results suggest embolic pathogenesis can contribute to the genesis of both cortical and internal watershed infarcts in primates

    Monkeys mutant for PKD1 recapitulate human autosomal dominant polycystic kidney disease

    Get PDF
    ゲノム編集技術を用いてカニクイザルモデルにおいて常染色体優性多発性嚢胞腎(ADPKD)の病態再現に成功 --小動物では病態再現できない難病の研究に新たな道--. 京都大学プレスリリース. 2019-12-13.Autosomal dominant polycystic kidney disease (ADPKD) caused by PKD1 mutations is one of the most common hereditary disorders. However, the key pathological processes underlying cyst development and exacerbation in pre-symptomatic stages remain unknown, because rodent models do not recapitulate critical disease phenotypes, including disease onset in heterozygotes. Here, using CRISPR/Cas9, we generate ADPKD models with PKD1 mutations in cynomolgus monkeys. As in humans and mice, near-complete PKD1 depletion induces severe cyst formation mainly in collecting ducts. Importantly, unlike in mice, PKD1 heterozygote monkeys exhibit cyst formation perinatally in distal tubules, possibly reflecting the initial pathology in humans. Many monkeys in these models survive after cyst formation, and cysts progress with age. Furthermore, we succeed in generating selective heterozygous mutations using allele-specific targeting. We propose that our models elucidate the onset and progression of ADPKD, which will serve as a critical basis for establishing new therapeutic strategies, including drug treatments

    Generation of a familial hypercholesterolemia model in non-human primate

    No full text
    Abstract Familial hypercholesterolemia (FH) is an inherited autosomal dominant disorder that is associated with a high plasma level of low-density lipoprotein (LDL) cholesterol, leading to an increased risk of cardiovascular diseases. To develop basic and translational research on FH, we here generated an FH model in a non-human primate (cynomolgus monkeys) by deleting the LDL receptor (LDLR) gene using the genome editing technique. Six LDLR knockout (KO) monkeys were produced, all of which were confirmed to have mutations in the LDLR gene by sequence analysis. The levels of plasma cholesterol and triglyceride were quite high in the monkeys, and were similar to those in FH patients with homozygous mutations in the LDLR gene. In addition, periocular xanthoma was observed only 1 year after birth. Lipoprotein profile analysis showed that the plasma very low-density lipoprotein and LDL were elevated, while the plasma high density lipoprotein was decreased in LDLR KO monkeys. The LDLR KO monkeys were also strongly resistant to medications for hypercholesterolemia. Taken together, we successfully generated a non-human primate model of hypercholesterolemia in which the phenotype is similar to that of homozygous FH patients

    First Successful Delivery after Uterus Transplantation in MHC-Defined Cynomolgus Macaques

    No full text
    Delivery following uterus transplantation (UTx)—an approach for treating uterine factor infertility—has not been reported in nonhuman primate models. Here, six female major histocompatibility complex (MHC)-defined cynomolgus macaques that underwent allogeneic UTx were evaluated. Antithymocyte globulin and rituximab were administered to induce immunosuppression and a triple maintenance regimen was used. Menstruation resumed in all animals with long-term survival, except one, which was euthanized due to infusion associated adverse reaction to antithymocyte globulin. Donor-specific antibodies (DSA) were detected in cases 2, 4, and 5, while humoral rejection occurred in cases 4 and 5. Post-transplant lymphoproliferative disorder (PTLD) developed in cases 2 and 3. Pregnancy was attempted in cases 1, 2, and 3 but was achieved only in case 2, which had haploidentical donor and recipient MHCs. Pregnancy was achieved in case 2 after recovery from graft rejection coincident with DSA and PTLD. A cesarean section was performed at full-term. This is the first report of a successful livebirth following allogeneic UTx in nonhuman primates, although the delivery was achieved via UTx between a pair carrying haploidentical MHCs. Experimental data from nonhuman primates may provide important scientific knowledge needed to resolve unsolved clinical issues in UTx
    corecore