5 research outputs found

    Toxicity of Tungsten Carbide and Cobalt-Doped Tungsten Carbide Nanoparticles in Mammalian Cells in Vitro

    Get PDF
    BACKGROUND: Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. OBJECTIVE: We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobalt-doped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. METHODS: We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendrocyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether natioparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). RESULTS: Chemical-physical characterization confirmed that WC as well as WC-Co natioparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. CONCLUSIONS: Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect

    Nanostructured Graphene-Titanium Dioxide Composites Synthesized by a Single-Step Aerosol Process for Photoreduction of Carbon Dioxide

    No full text
    Photocatalytic reduction of carbon dioxide (CO(2)) to hydrocarbons by using nanostructured materials activated by solar energy is a promising approach to recycling CO(2) as a fuel feedstock. CO(2) photoreduction, however, suffers from low efficiency mainly due to the inherent drawback of fast electron-hole recombination in photocatalysts. This work reports the synthesis of nanostructured composites of titania (TiO(2)) nanoparticles (NPs) encapsulated by reduced graphene oxide (rGO) nanosheets via an aerosol approach. The role of synthesis temperature and TiO(2)/GO ratio in CO(2) photoreduction was investigated. As-prepared nanocomposites demonstrated enhanced CO(2) conversion performance as compared with that of pristine TiO(2) NPs due to the strong electron trapping capability of the rGO nanosheets
    corecore