1,633 research outputs found
Closed formula for the relative entropy of entanglement
The long-standing problem of finding a closed formula for the relative
entropy of entanglement (REE) for two qubits is addressed. A compact-form
solution to the inverse problem, which characterizes an entangled state for a
given closest separable state, is obtained. Analysis of the formula for a large
class of entangled states strongly suggests that a compact analytical solution
of the original problem, which corresponds to finding the closest separable
state for a given entangled state, can be given only in some special cases. A
few applications of the compact-form formula are given to show additivity of
the REE, to relate the REE with the Rains upper bound for distillable
entanglement, and to show that a Bell state does not have a unique closest
separable state.Comment: 7 pages, the title was modified as suggested by the PRA editor
Ultrafast nematic-orbital excitation in FeSe
The electronic nematic phase is an unconventional state of matter that
spontaneously breaks the rotational symmetry of electrons. In
iron-pnictides/chalcogenides and cuprates, the nematic ordering and
fluctuations have been suggested to have as-yet-unconfirmed roles in
superconductivity. However, most studies have been conducted in thermal
equilibrium, where the dynamical property and excitation can be masked by the
coupling with the lattice. Here we use femtosecond optical pulse to perturb the
electronic nematic order in FeSe. Through time-, energy-, momentum- and
orbital-resolved photo-emission spectroscopy, we detect the ultrafast dynamics
of electronic nematicity. In the strong-excitation regime, through the
observation of Fermi surface anisotropy, we find a quick disappearance of the
nematicity followed by a heavily-damped oscillation. This short-life nematicity
oscillation is seemingly related to the imbalance of Fe 3dxz and dyz orbitals.
These phenomena show critical behavior as a function of pump fluence. Our
real-time observations reveal the nature of the electronic nematic excitation
instantly decoupled from the underlying lattice
Momentum dependence of the energy gap in the superconducting state of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu)
The energy gap of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu) was probed by
angle resolved photoemission spectroscopy (ARPES) using a vacuum ultraviolet
laser (photon energy 6.994 eV) or He I resonance line (21.218 eV) as photon
source. The results show that the gap around the node at sufficiently low
temperatures can be well described by a monotonic d-wave gap function for both
samples and the gap of the R=La sample is larger reflecting the higher Tc.
However, an abrupt deviation from the d-wave gap function and an opposite R
dependence for the gap size were observed around the antinode, which represent
a clear disentanglement between the antinodal pseudogap and the nodal
superconducting gap.Comment: Submitted as the proceedings of LT2
Doping-dependence of nodal quasiparticle properties in high- cuprates studied by laser-excited angle-resolved photoemission spectroscopy
We investigate the doping dependent low energy, low temperature ( = 5 K)
properties of nodal quasiparticles in the d-wave superconductor
BiSrCaCuO (Bi2212). By utilizing ultrahigh
resolution laser-excited angle-resolved photoemission spectroscopy, we obtain
precise band dispersions near , mean free paths and scattering rates
() of quasiparticles. For optimally and overdoped, we obtain very sharp
quasiparticle peaks of 8 meV and 6 meV full-width at half-maximum,
respectively, in accord with terahertz conductivity. For all doping levels, we
find the energy-dependence of , while () shows a monotonic increase from overdoping to underdoping. The doping
dependence suggests the role of electronic inhomogeneity on the nodal
quasiparticle scattering at low temperature (5 K \lsim 0.07T_{\rm c}),
pronounced in the underdoped region
Orbital-dependent modifications of electronic structure across magneto-structural transition in BaFe2As2
Laser angle-resolved photoemission spectroscopy (ARPES) is employed to
investigate the temperature (T) dependence of the electronic structure in
BaFe2As2 across the magneto-structural transition at TN ~ 140 K. A drastic
transformation in Fermi surface (FS) shape across TN is observed, as expected
by first-principles band calculations. Polarization-dependent ARPES and band
calculations consistently indicate that the observed FSs at kz ~ pi in the
low-T antiferromagnetic (AF) state are dominated by the Fe3dzx orbital, leading
to the two-fold electronic structure. These results indicate that
magneto-structural transition in BaFe2As2 accompanies orbital-dependent
modifications in the electronic structure.Comment: 13 pages, 4 figures. accepted by Physical Review Letter
Influence of aggregation and measurement scale on ranking a compromise alternative in AHP
Author's pre-print version dated 20. December 2009 deposited in Munich Personal RePEc Archive. Final version published by Palgrave Macmillan; available online at http:// www.palgrave-journals.com/Analytic Hierarchy Process (AHP) is one of the most popular multi-attribute decision aid methods. However, within AHP, there are several competing preference measurement scales and aggregation techniques. In this paper, we compare these possibilities using a decision problem with an inherent trade-off between two criteria. A decision-maker has to choose among three alternatives: two extremes and one compromise. Six different measurement scales described previously in the literature and the new proposed logarithmic scale are considered for applying the additive and the multiplicative aggregation techniques. The results are compared with the standard consumer choice theory. We find that with the geometric and power scales a compromise is never selected when aggregation is additive and rarely when aggregation is multiplicative, while the logarithmic scale used with the multiplicative aggregation most often selects the compromise that is desirable by consumer choice theory
- ā¦