108 research outputs found

    N-acetyltaurine and Acetylcarnitine Production for the Mitochondrial Acetyl-CoA Regulation in Skeletal Muscles during Endurance Exercises

    Get PDF
    During endurance exercises, a large amount of mitochondrial acetyl-CoA is produced in skeletal muscles from lipids, and the excess acetyl-CoA suppresses the metabolic flux from glycolysis to the TCA cycle. This study evaluated the hypothesis that taurine and carnitine act as a buffer of the acetyl moiety of mitochondrial acetyl-CoA derived from the short- and long-chain fatty acids of skeletal muscles during endurance exercises. In human subjects, the serum concentrations of acetylated forms of taurine (NAT) and carnitine (ACT), which are the metabolites of acetyl-CoA buffering, significantly increased after a full marathon. In the culture medium of primary human skeletal muscle cells, NAT and ACT concentrations significantly increased when they were cultured with taurine and acetate or with carnitine and palmitic acid, respectively. The increase in the mitochondrial acetyl-CoA/free CoA ratio induced by acetate and palmitic acid was suppressed by taurine and carnitine, respectively. Elevations of NAT and ACT in the blood of humans during endurance exercises might serve the buffering of the acetyl-moiety in mitochondria by taurine and carnitine, respectively. The results suggest that blood levels of NAT and ACT indicate energy production status from fatty acids in the skeletal muscles of humans undergoing endurance exercise

    Preliminary Clinical Evaluation of Toxicity and Efficacy of A New Astaxanthin-rich Haematococcus pluvialis Extract

    Get PDF
    Astaxanthin (Ax), a carotenoid ubiquitously distributed in microorganisms, fish, and crustaceans, has been known to be a potent antioxidant and hence exhibit various physiological effects. We attempted in these studies to evaluate clinical toxicity and efficacy of long-term administration of a new Ax product, by measuring biochemical and hematological blood parameters and by analyzing brain function (using CogHealth and P300 measures). Ax-rich Haematococcus pluvialis extracts equivalent to 4, 8, 20 mg of Ax dialcohol were administered to 73, 38, and 16 healthy adult volunteers, respectively, once daily for 4 weeks to evaluate safety. Ten subjects with age-related forgetfulness received an extract equivalent to 12 mg in a daily dosing regimen for 12 weeks to evaluate efficacy. As a result, no abnormality was observed and efficacy for age-related decline in cognitive and psychomotor functions was suggested
    corecore