14 research outputs found

    Dipole patterns in the structures of some ferroelectrics and antiferroelectrics

    No full text
    The dipole patterns in the ferroelectric and antiferroelectric structures are drawn according to experimentally determined symmetry changes in the ferroelectrics and antiferroelectrics. For the ferroelectrics the dipoles of the unit cells for one domain are oriented in parallel and the directions of the polarisation in the adjacent domains are at definite angles to each other. It is assumed for the antiferroelectrics, that the superstructural unit cell is formed by the adjacent cells of the paraelectrical modification; the subcells having the antiparallel directions of the polarisation. It is these superstructural cells of the antiferroelectrics that are determined during the experimental investigations of the antiferroelectrics. The superstructural cells of the adjacent domains are different. In one case, the difference is that in the adjacent domains, the directions of the polarisation in the subcells form an angle (e.g., in PbZrO3). In other cases the superstructural cells have not only different directions of the polarisation in the subcells but different signs of the enantiomorphism (e.g., NH4H2PO4). In the third case, the only difference is that the superstructural unit cells in the adjacent domains are turned by an angle to each other round the direction of the subcell polarisation [e.g., (NH4)2H3IO6], etc

    The change of complete symmetry of the crystals during the phase transitions in ferroelectrics and ferromagnetics

    No full text
    The extension of the superposition principle of the symmetries (P. Curie principle of symmetry) for the case of complete symmetry is given. The enumeration of all crystallographical groups of complete symmetry is presented, the number of elements having complete symmetry for each class of the crystals being indicated. The change of complete symmetry of the crystals under the phase transitions is obtained by superimposing the elements of complete symmetry of polar or axial vectors on the one hand, and the elements of complete symmetry of the crystals on the other. The tables of complete symmetry changes for the cubic, rhombic, monoclinic and triclinic crystals during the ferroelectric and ferromagnetic phase transitions are given

    Impurity Induced Raman Scattering in Solids

    No full text

    Giant nonlinear optical activity in a plasmonic metamaterial

    No full text
    In 1950, a quarter of a century after his first ever nonlinear optical experiment when intensity dependent absorption was observed in uranium-doped glass, Sergey Vavilov predicted that birefringence, dichroism and polarization rotatory power should be dependent on light intensity. It required the invention of the laser to observe the barely detectable effect of light intensity on the polarization rotary power of the optically active lithium iodate crystal, the phenomenon now known as the nonlinear optical activity, a high-intensity counterpart of the fundamental optical effect of polarization rotation in chiral media. Here we report that a plasmonic metamaterial exhibits nonlinear optical activity 30 million times stronger than lithium iodate crystals thus transforming this fundamental phenomenon of polarization nonlinear optics from an esoteric phenomenon into a major effect of nonlinear plasmonics with potential for practical applications

    Antiferroelectrics: History, fundamentals, crystal chemistry, crystal structures, size effects, and applications

    No full text
    Antiferroelectric (AFE) materials are of great interest owing to their scientific richness and their utility in high energy density capacitors. Here, the history of AFEs is reviewed, and the characteristics of antiferroelectricity and the phase transition of an AFE material are described. AFEs are energetically close to ferroelectric (FE) phases, and thus both the electric field strength and applied stress (pressure) influence the nature of the transition. With the comparable energetics between the AFE and FE phases, there can be a competition and frustration of these phases, and either incommensurate (INC) and/or a glassy (relaxor) structures may be observed. The phase transition in AFEs can also be influenced by the crystal/grain size, particularly at nanometric dimensions, and may be tuned through the formation of solid solutions. There have been extensive studies on the perovskite family of AFE materials, but many other crystal structures host AFE behavior, such as CuBiP2Se6. AFE applications include DC‐link capacitors for power electronics, defibrillator capacitors, pulse power devices, and electromechanical actuators. The paper concludes with a perspective on the future needs and opportunities with respect to discovery, science, and applications of AFE
    corecore