6 research outputs found

    Decoherence in Crystals of Quantum Molecular Magnets

    Full text link
    Decoherence in Nature has become one of the most pressing problems in physics. Many applications, including quantum information processing, depend on understanding it; and fundamental theories going beyond quantum mechanics have been suggested [1-3], where the breakdown of quantum theory appears as an 'intrinsic decoherence', mimicking environmental decoherence [4]. Such theories cannot be tested until we have a handle on ordinary environmental decoherence processes. Here we show that the theory for insulating electronic spin systems can make accurate predictions for environmental decoherence in molecular-based quantum magnets [5]. Experimental understanding of decoherence in molecular magnets has been limited by short decoherence times, which make coherent spin manipulation extremely difficult [6-9]. Here we reduce the decoherence by applying a strong magnetic field. The theory predicts the contributions to the decoherence from phonons, nuclear spins, and intermolecular dipolar interactions, for a single crystal of the Fe8 molecular magnet. In experiments we find that the decoherence time varies strongly as a function of temperature and magnetic field. The theoretical predictions are fully verified experimentally - there are no other visible decoherence sources. Our investigation suggests that the decoherence time is ultimately limited by nuclear spins, and can be extended up to about 500 microseconds, by optimizing the temperature, magnetic field, and nuclear isotopic concentrations.Comment: Submitted version including 11 pages, 3 figures and online supporting materials. Appeared on Nature Advance Online Publication (AOP) on July 20th, 2011. (http://www.nature.com/nature/journal/vaop/ncurrent/full/nature10314.html

    Quantum nanomagnets and nuclear spins: an overview

    Full text link
    This mini-review presents a simple and accessible summary on the fascinating physics of quantum nanomagnets coupled to a nuclear spin bath. These chemically synthesized systems are an ideal test ground for the theories of decoherence in mesoscopic quantum degrees of freedom, when the coupling to the environment is local and not small. We shall focus here on the most striking quantum phenomenon that occurs in such nanomagnets, namely the tunneling of their giant spin through a high anisotropy barrier. It will be shown that perturbative treatments must be discarded, and replaced by a more sophisticated formalism where the dynamics of the nanomagnet and the nuclei that couple to it are treated together from the beginning. After a critical review of the theoretical predictions and their experimental verification, we continue with a set of experimental results that challenge our present understanding, and outline the importance of filling also this last gap in the theory.Comment: 14 pages, 3 figures. Chapter in the Proceedings of the 2006 Les Houches summer school "Quantum Magnetism", ed. B. Barbara & Y. Imry, Springer (2007
    corecore