6,730 research outputs found
Preparation of titanium dioxide (TiO<inf>2</inf>) from sludge produced by titanium tetrachloride (TiCl<inf>4</inf>) flocculation of wastewater
Sludge disposal is one of the most costly and environmentally problematic challenges of modern wastewater treatment worldwide. In this study, a new process was developed, which has a significant potential for lower cost of waste disposal, protection of the environment and public health, and yield of economically useful byproducts. Titanium oxide (TiO2), which is the most widely used metal oxide, was produced from the wastewater sludge generated by the flocculation of secondary wastewater with titanium tetrachloride (TiCl4). Detailed analyses were conducted to compare TiCl 4, ferric chloride (FeCl3), and aluminum sulfate (Al 2(SO4)3) flocculation. Removal of organic matter and different molecular sizes by Ti-salt flocculation was similar to that of the most widely used Fe- and Al-salt flocculation. The mean size of Ti-, Fe-, and Al-salt flocs was 47.5, 42.5, and 16.9 μm, respectively. The decantability of the settled flocs by TiCl4 coagulant was similar to that by FeCl3 coagulant and much higher than that of Al 2(SO4)3. The photocatalyst from wastewater (PFW) produced by TiCl4 flocculation was characterized by X-ray diffraction, BET surface area, scanning electron microscopy/energy dispersive X-ray, transmission electron microscopy, photocatalytic activity, and X-ray photoelectron spectroscopy. The resulting PFW was found to be superior to commercial TiO2 (P-25) in terms of photocatalytic activity and surface area. The PFW was also found to be mainly doped with C and P atoms. The atomic percentage of the PFW was TiO1.42C0.44P 0.14. © 2007 American Chemical Society
Quasimonoenergetic electron beam generation by using a pinholelike collimator in a self-modulated laser wakefield acceleration
A relativistic electron bunch with a large charge (>2 nC) was produced from a self-modulated laser wakefield acceleration configuration. For this experiment, an intense laser beam with a peak power of 2 TW and a duration of 700 fs was focused in a supersonic He gas jet, and relativistic high-energy electrons were observed from the strong laser-plasma interaction. By passing the electron bunch through a small pinholelike collimator, we could generate a quasimonoenergetic high-energy electron beam, in which electrons within a cone angle of 0.25 mrad (f/70) were selected. The beam clearly showed a narrow-energy-spread behavior with a central energy of 4.3 MeV and a charge of 200 pC. The acceleration gradient was estimated to be about 30 GeV/m. Particle-in-cell simulations were performed for comparison study and the result shows that both the experimental and simulation results are in good agreement and the electron trapping is initiated by the slow beat wave of the Raman backward wave and the incident laser pulse.open181
Substituent position-induced color tunability in polymer light-emitting diodes
We report substituent position-induced color tunability in polymer light-emitting diodes fabricated with poly[2-{2- or 3- or 4-[(3,7-dimethyloctyl)oxy] phenyoxy}-1,4-phenylenevinylene] (DMOPPPV). When the position of the substituent in DMOP-PPV moves to the ortho, meta, and para sites, the corresponding photo- and electroluminescence spectra shift their peaks to a longer wavelength of about 540, 560, and 585 nm, respectively. We ascribe this to the different degree of steric effect in the backbone for each substituent position. As the substituent position is closer to the main chain, the planarity of the backbone is less conserved, thereby reducing the effective conjugated length of the main chain and broadening the pi-pi(*) energy gapopen6
Structure and dielectric properties of cubic Bi<inf>2</inf>(Zn <inf>1/3</inf>Ta<inf>2/3</inf>)<inf>2</inf> O<inf>7</inf> thin films
Pyrochlore Bi2(Zn1/3Ta2/3)2 O7 (BZT) films were prepared by pulsed laser deposition on Pt/TiO2/SiO2/Si substrates. In contrast to bulk monoclinic BZT ceramics, the BZT films have a cubic structure mediated by an interfacial layer. The dielectric properties of the cubic BZT films [ε∼177, temperature coefficient of capacitance (TCC) ∼-170 ppm/°C] are much different from those of monoclinic BZT ceramics (ε∼61, TCC ∼+60 ppm/°C). Increasing the thickness of the BZT films returns the crystal structure to the monoclinic phase, which allows the dielectric properties of the BZT films to be tuned without changing their chemical composition. © 2009 American Institute of Physics
Effect of pH and temperature on the morphology and phases of co-precipitated hydroxyapatite
This paper reports a high-yield process to fabricate biomimetic hydroxyapatite nano-particles or nano-plates. Hydroxyapatite is obtained by simultaneous dripping of calcium chloride and ammonium hydrogen phosphate solutions into a reaction vessel. Reactions were carried out under various pH and temperature conditions. The morphology and phase composition of the precipitates were investigated using scanning electron microscope and X-ray diffraction. The analyses showed that large plates of calcium hydrophosphate are formed at neutral or acidic pH condition. Nanoparticles of hydroxyapatite were obtained in precipitates prepared at pH 9–11. Hydroxyapatite plates akin to seashell nacre were obtained at 40 °C and pH 9. This material holds promise to improve the strength of hydroxyapatite containing composites for bone implant or bone cement used in orthopaedic surgeries. The thermodynamics of the crystal growth under these conditions was discussed. An assembly mechanism of the hydroxyapatite plates was proposed according to the nanostructure observations
Holography at an Extremal De Sitter Horizon
Rotating maximal black holes in four-dimensional de Sitter space, for which
the outer event horizon coincides with the cosmological horizon, have an
infinite near-horizon region described by the rotating Nariai metric. We show
that the asymptotic symmetry group at the spacelike future boundary of the
near-horizon region contains a Virasoro algebra with a real, positive central
charge. This is evidence that quantum gravity in a rotating Nariai background
is dual to a two-dimensional Euclidean conformal field theory. These results
are related to the Kerr/CFT correspondence for extremal black holes, but have
two key differences: one of the black hole event horizons has been traded for
the cosmological horizon, and the near-horizon geometry is a fiber over dS_2
rather than AdS_2.Comment: 15 page
Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model
Exosomes are endosome-derived small membrane vesicles that are secreted by most cell types including tumor cells. Tumor-derived exosomes usually contain tumor antigens and have been used as a source of tumor antigens to stimulate anti-tumor immune responses. However, many reports also suggest that tumor-derived exosomes can facilitate tumor immune evasion through different mechanisms, most of which are antigen-independent. In the present study we used a mouse model of delayed-type hypersensitivity (DTH) and demonstrated that local administration of tumor-derived exosomes carrying the model antigen chicken ovalbumin (OVA) resulted in the suppression of DTH response in an antigen-specific manner. Analysis of exosome trafficking demonstrated that following local injection, tumor-derived exosomes were internalized by CD11c+ cells and transported to the draining LN. Exosome-mediated DTH suppression is associated with increased mRNA levels of TGF-β1 and IL-4 in the draining LN. The tumor-derived exosomes examined were also found to inhibit DC maturation. Taken together, our results suggest a role for tumor-derived exosomes in inducing tumor antigen-specific immunosuppression, possibly by modulating the function of APCs. © 2011 Yang et al
The extraordinary evolutionary history of the reticuloendotheliosis viruses
The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events
- …
