42 research outputs found

    Chronic multichannel neural recordings from soft regenerative microchannel electrodes during gait

    Get PDF
    Reliably interfacing a nerve with an electrode array is one of the approaches to restore motor and sensory functions after an injury to the peripheral nerve. Accomplishing this with current technologies is challenging as the electrode-neuron interface often degrades over time, and surrounding myoelectric signals contaminate the neuro-signals in awake, moving animals. The purpose of this study was to evaluate the potential of microchannel electrode implants to monitor over time and in freely moving animals, neural activity from regenerating nerves. We designed and fabricated implants with silicone rubber and elastic thin-film metallization. Each implant carries an eight-by-twelve matrix of parallel microchannels (of 120\u2009 7\u2009110\u2009\u3bcm2 cross-section and 4\u2009mm length) and gold thin-film electrodes embedded in the floor of ten of the microchannels. After sterilization, the soft, multi-lumen electrode implant is sutured between the stumps of the sciatic nerve. Over a period of three months and in four rats, the microchannel electrodes recorded spike activity from the regenerating sciatic nerve. Histology indicates mini-nerves formed of axons and supporting cells regenerate robustly in the implants. Analysis of the recorded spikes and gait kinematics over the ten-week period suggests firing patterns collected with the microchannel electrode implant can be associated with different phases of gait

    Injectable electronics as a modern day ‘ship in a bottle’

    No full text

    Restoring touch

    No full text

    Hybrid and fast: A novel in silico approach with reduced computational cost to predict failures of in vivo needle-based implantations

    No full text
    Penetrating neural interfaces, connecting peripheral nerves to robotic devices (e.g., hand prostheses), could be inserted through tungsten needles, which are able to minimize damages and scarring due to the puncture wounds. Unfortunately, puncturing needles may fail independently on the material fracture toughness. In addition, independently on internal biotic causes, needles’ performances may decrease during in vivo trials. External biotic causes seems to be related to these effects, even if the exact genesis of phenomena, decreasing the in vivo reliability, is still partially unknown. Therefore, this work provides a hybrid computational approach, simultaneously using theoretical relationships and novel fast silico models of nerves. This framework is able to lower computational times needed to predict in vivo performances by using in vitro reliability and local differences between in vivo and in vitro mechanical response of nerves

    Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array

    Get PDF
    Soft bioelectronic devices provide new opportunities for next-generation implantable devices owing to their soft mechanical nature that leads to minimal tissue damages and immune responses. However, a soft form of the implantable optoelectronic device for optical sensing and retinal stimulation has not been developed yet because of the bulkiness and rigidity of conventional imaging modules and their composing materials. Here, we describe a high-density and hemispherically curved image sensor array that leverages the atomically thin MoS2-graphene heterostructure and strain-releasing device designs. The hemispherically curved image sensor array exhibits infrared blindness and successfully acquires pixelated optical signals. We corroborate the validity of the proposed soft materials and ultrathin device designs through theoretical modeling and finite element analysis. Then, we propose the ultrathin hemispherically curved image sensor array as a promising imaging element in the soft retinal implant. The CurvIS array is applied as a human eye-inspired soft implantable optoelectronic device that can detect optical signals and apply programmed electrical stimulation to optic nerves with minimum mechanical side effects to the retina

    Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury.

    Get PDF
    International audienceElectrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans
    corecore