2,870 research outputs found

    An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks

    Get PDF
    Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging problem. Although some methods exist to address the problem in homogeneous WSNs, research on this problem in heterogeneous WSNs have progressed at a slow pace. Inspired by the promising performance of ant colony optimization (ACO) to solve combinatorial problems, this paper proposes an ACO-based approach that can maximize the lifetime of heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint connected covers that satisfy both sensing coverage and network connectivity. A construction graph is designed with each vertex denoting the assignment of a device in a subset. Based on pheromone and heuristic information, the ants seek an optimal path on the construction graph to maximize the number of connected covers. The pheromone serves as a metaphor for the search experiences in building connected covers. The heuristic information is used to reflect the desirability of device assignments. A local search procedure is designed to further improve the search efficiency. The proposed approach has been applied to a variety of heterogeneous WSNs. The results show that the approach is effective and efficient in finding high-quality solutions for maximizing the lifetime of heterogeneous WSNs

    VI-Band Follow-Up Observations of Ultra-Long-Period Cepheid Candidates in M31

    Full text link
    The ultra-long period Cepheids (ULPCs) are classical Cepheids with pulsation periods exceeding ≈80\approx 80 days. The intrinsic brightness of ULPCs are ~1 to ~3 mag brighter than their shorter period counterparts. This makes them attractive in future distance scale work to derive distances beyond the limit set by the shorter period Cepheids. We have initiated a program to search for ULPCs in M31, using the single-band data taken from the Palomar Transient Factory, and identified eight possible candidates. In this work, we presented the VI-band follow-up observations of these eight candidates. Based on our VI-band light curves of these candidates and their locations in the color-magnitude diagram and the Period-Wesenheit diagram, we verify two candidates as being truly ULPCs. The six other candidates are most likely other kinds of long-period variables. With the two confirmed M31 ULPCs, we tested the applicability of ULPCs in distance scale work by deriving the distance modulus of M31. It was found to be μM31,ULPC=24.30±0.76\mu_{M31,ULPC}=24.30\pm0.76 mag. The large error in the derived distance modulus, together with the large intrinsic dispersion of the Period-Wesenheit (PW) relation and the small number of ULPCs in a given host galaxy, means that the question of the suitability of ULPCs as standard candles is still open. Further work is needed to enlarge the sample of calibrating ULPCs and reduce the intrinsic dispersion of the PW relation before re-considering ULPCs as suitable distance indicators.Comment: 13 pages, with 14 Figures and 4 Tables (one online table). AJ accepte

    Plaintiff\u27s Opposition Reply to Defendant Dolly\u27s Motion for Summary Judgment

    Get PDF

    A New Large Super-Fast Rotator: (335433) 2005 UW163

    Get PDF
    Asteroids of size larger than 150 m generally do not have rotation periods smaller than 2.2 hours. This spin cutoff is believed to be due to the gravitationally bound rubble-pile structures of the asteroids. Rotation with periods exceeding this critical value will cause asteroid breakup. Up until now, only one object, 2001 OE84, has been found to be an exception to this spin cutoff. We report the discovery of a new super-fast rotator, (335433) 2005 UW163, spinning with a period of 1.290 hours and a lightcurve variation of r′∼0.8r'\sim0.8 mag from the observations made at the P48 telescope and the P200 telescope of the Palomar Observatory. Its Hr′=17.69±0.27H_{r'} = 17.69 \pm 0.27 mag and multi-band colors (i.e., g′−r′=0.68±0.03g'-r' = 0.68\pm0.03 mag, r′−i′=0.19±0.02r'-i' = 0.19\pm0.02 mag and SDSS i−z=−0.45i-z = -0.45 mag) show it is a V-type asteroid with a diameter of 0.6+0.3/−0.20.6 +0.3/-0.2 km. This indicates (335433) 2005 UW163 is a super-fast rotator beyond the regime of the small monolithic asteroid.Comment: 18 pages, 4 figures, 1 table Accepted by ApJ

    Comparative transcriptomics of multidrug-resistant Acinetobacter baumannii in response to antibiotic treatments

    Get PDF
    Abstract Multidrug-resistant Acinetobacter baumannii, a major hospital-acquired pathogen, is a serious health threat and poses a great challenge to healthcare providers. Although there have been many genomic studies on the evolution and antibiotic resistance of this species, there have been very limited transcriptome studies on its responses to antibiotics. We conducted a comparative transcriptomic study on 12 strains with different growth rates and antibiotic resistance profiles, including 3 fast-growing pan-drug-resistant strains, under separate treatment with 3 antibiotics, namely amikacin, imipenem, and meropenem. We performed deep sequencing using a strand-specific RNA-sequencing protocol, and used de novo transcriptome assembly to analyze gene expression in the form of polycistronic transcripts. Our results indicated that genes associated with transposable elements generally showed higher levels of expression under antibiotic-treated conditions, and many of these transposon-associated genes have previously been linked to drug resistance. Using co-expressed transposon genes as markers, we further identified and experimentally validated two novel genes of which overexpression conferred significant increases in amikacin resistance. To the best of our knowledge, this study represents the first comparative transcriptomic analysis of multidrug-resistant A. baumannii under different antibiotic treatments, and revealed a new relationship between transposons and antibiotic resistance
    • …
    corecore