19,315 research outputs found

    A short course on positive solutions of systems of ODEs via fixed point index

    Full text link
    We shall firstly study the existence of one positive solution of a model problem for one equation via the classical Krasnosel'ski\u\i{} fixed-point theorem. Secondly we investigate how to handle this problem via the fixed point index theory for compact maps. Thirdly we illustrate how this approach can be tailored in order to deal with non-trivial solutions for systems of ODEs subject to local BCs. The case of nonlocal and nonlinear BCs will also be investigated. Finally we present some applications to the existence of radial solutions of some systems of elliptic PDEs.Comment: 52 pages 13 figure

    Nonzero positive solutions of a multi-parameter elliptic system with functional BCs

    Full text link
    We prove, by topological methods, new results on the existence of nonzero positive weak solutions for a class of multi-parameter second order elliptic systems subject to functional boundary conditions. The setting is fairly general and covers the case of multi-point, integral and nonlinear boundary conditions. We also present a non-existence result. We provide some examples to illustrate the applicability our theoretical results.Comment: 10 page

    Nontrivial solutions of boundary value problems for second order functional differential equations

    Full text link
    In this paper we present a theory for the existence of multiple nontrivial solutions for a class of perturbed Hammerstein integral equations. Our methodology, rather than to work directly in cones, is to utilize the theory of fixed point index on affine cones. This approach is fairly general and covers a class of nonlocal boundary value problems for functional differential equations. Some examples are given in order to illustrate our theoretical results.Comment: 19 pages, revised versio

    Nonzero radial solutions for a class of elliptic systems with nonlocal BCs on annular domains

    Full text link
    We provide new results on the existence, non-existence, localization and multiplicity of nontrivial solutions for systems of Hammerstein integral equations. Some of the criteria involve a comparison with the spectral radii of some associated linear operators. We apply our results to prove the existence of multiple nonzero radial solutions for some systems of elliptic boundary value problems subject to nonlocal boundary conditions. Our approach is topological and relies on the classical fixed point index. We present an example to illustrate our theory.Comment: 25 pages. arXiv admin note: text overlap with arXiv:1404.139

    Nontrivial solutions of systems of Hammerstein integral equations with first derivative dependence

    Full text link
    By means of classical fixed point index, we prove new results on the existence, non-existence, localization and multiplicity of nontrivial solutions for systems of Hammerstein integral equations where the nonlinearities are allowed to depend on the first derivative. As a byproduct of our theory we discuss the existence of positive solutions of a system of third order ODEs subject to nonlocal boundary conditions. Some examples are provided in order to illustrate the applicability of the theoretical results.Comment: 18 page

    Multiple positive solutions of parabolic systems with nonlinear, nonlocal initial conditions

    Full text link
    In this paper we study the existence, localization and multiplicity of positive solutions for parabolic systems with nonlocal initial conditions. In order to do this, we extend an abstract theory that was recently developed by the authors jointly with Radu Precup, related to the existence of fixed points of nonlinear operators satisfying some upper and lower bounds. Our main tool is the Granas fixed point index theory. We also provide a non-existence result and an example to illustrate our theory.Comment: 28 pages, 1 figure. arXiv admin note: text overlap with arXiv:1401.135
    • …
    corecore