89 research outputs found

    Histone Marks-Dependent Effect on Alternative Splicing: New Perspectives for Targeted Splicing Modulation in Cancer?

    Get PDF
    Alternative splicing (AS) is a tightly regulated mechanism that generates the complex human proteome from a small number of genes. Cis-regulatory RNA motifs in exons and introns control AS, recruiting positive and negative trans-acting splicing regulators. At a higher level, chromatin affects splicing events. Growing evidence indicates that the popular histone code hypothesis can be extended to RNA-level processes, such as AS. In addition to nucleosome positioning, which can generate transcriptional barriers to shape the final splicing outcome, histone post-translational modifications can contribute to the detailed regulation of single exon inclusion/exclusion. A histone-based system can identify alternatively spliced chromatin stretches, affecting RNAPII elongation locally or recruiting splicing components via adaptor complexes. In tumor cells, several mechanisms trigger misregulated AS events and produce cancer-associated transcripts. On a genome-wide level, aberrant AS can be the consequence of dysfunctional epigenetic splicing code, including altered enrichment in histone post-translational modifications. This review describes the main findings related to the effect of histone modifications and variants on splicing outcome and how a dysfunctional epigenetic splicing code triggers aberrant AS in cancer. In addition, it highlights recent advances in programmable DNA-targeting technologies and their possible application for AS targeted epigenetic modulation

    Dynamic recruitment of transcription factors and epigenetic changes on the ER stress response gene promoters

    Get PDF
    Response to stresses that alter the function of the endoplasmic reticulum is an important cellular function, which relies on the activation of specific genes. Several transcription factors (TFs) are known to affect this pathway. Using RT–PCR and ChIP assays, we studied the recruitment of promoter-specific TFs, general TFs and epigenetic marks in activated promoters. H3-K4 di- and tri-methylation and H3-K79 di-methylation are present before induction. H3 acetylation is generally high before induction, and H4 acetylation shows a promoter-specific increase. Interestingly, there is a depletion of histone H3 under maximal induction, explaining an apparent decrease of H3-K4 tri-methylation and H3-K79 di-methylation. Pol II is found enriched on some promoters under basal conditions, unlike TBP and p300, which are recruited selectively. Most genes are bound by XBP-1 after induction, some before induction, presumably by the inactive isoform. ATF6 and CHOP associate to largely different set of genes. C/EBPβ is selective and binding to the CHOP promoter precedes that of XBP-1, ATF6 and CHOP. Finally, one of the ER-stress inducible genes analyzed, HRD1, is not bound by any of these factors. Among the constitutive TFs, NF-Y, but not Sp1, is found on all genes before induction. Intriguingly, siRNA interference of the NF-YB subunit indicates transcriptional impairment of some, but not all genes. These data highlight a previously unappreciated complexity of TFs binding and epigenetic changes, pointing to different TFs-specific pathways within this broad response

    Transcription Factors in Cancer: When Alternative Splicing Determines Opposite Cell Fates

    Get PDF
    Alternative splicing (AS) is a finely regulated mechanism for transcriptome and proteome diversification in eukaryotic cells. Correct balance between AS isoforms takes part in molecular mechanisms that properly define spatiotemporal and tissue specific transcriptional programs in physiological conditions. However, several diseases are associated to or even caused by AS alterations. In particular, multiple AS changes occur in cancer cells and sustain the oncogenic transcriptional program. Transcription factors (TFs) represent a key class of proteins that control gene expression by direct binding to DNA regulatory elements. AS events can generate cancer-associated TF isoforms with altered activity, leading to sustained proliferative signaling, differentiation block and apoptosis resistance, all well-known hallmarks of cancer. In this review, we focus on how AS can produce TFs isoforms with opposite transcriptional activities or antagonistic functions that severely impact on cancer biology. This summary points the attention to the relevance of the analysis of TFs splice variants in cancer, which can allow patients stratification despite the presence of interindividual genetic heterogeneity. Recurrent TFs variants that give advantage to specific cancer types not only open the opportunity to use AS transcripts as clinical biomarkers but also guide the development of new anti-cancer strategies in personalized medicine

    Dynamic recruitment of NF-Y and histone acetyltransferases on cell-cycle promoters

    Get PDF
    Regulation of transcription during the cell-cycle is under the control of E2 factors (E2Fs), often in cooperation with nuclear factor Y (NF-Y), a histone-like CCAAT-binding trimer. NF-Y is paradigmatic of a constitutive, ubiquitous factor that pre-sets the promoter architecture for other regulatory proteins to access it. We analyzed the recruitment of NF-Y, E2F1/4/6, histone acetyltransferases, and histone deacetylase (HDAC) 1/3/4 to several cell-cycle promoters by chromatin immunoprecipitation assays in serum-starved and restimulated NIH3T3 cells. NF-Y binding is not constitutive but timely regulated in all promoters tested, being displaced when promoters are repressed. p300 association correlates with activation, and it is never found in the absence of NF-Y, whereas PCAF/hGCN5 is often found before NF-Y association. E2F4 and E2F6, together with HDACs, are bound to repressed promoters, including the G(2)/M Cyclin B2. As expected, an inverse relationship between HDACs association and histones H3/H4 acetylation is observed. Blocking cells in G(1) with the cyclin-dependent kinase 2 inhibitor R-roscovitine confirms that NF-Y is bound to G(1)/S but not to G(2)/M promoters in G(1). These data indicate that following the release of E2Fs/HDACs, a hierarchy of PCAF-NF-Y-p300 interactions and H3-H4 acetylations are required for activation of cell-cycle promoters

    Concurrent inhibition of enzymatic activity and NF-Y-mediated transcription of Topoisomerase-IIα by bis-DemethoxyCurcumin in cancer cells

    Get PDF
    Topoisomerase-IIa (TOP2A) enzyme is essential for cell viability due to its fundamental role in DNA metabolism and in chromatin organization during interphase and mitosis. TOP2A expression is finely regulated at the transcriptional level through the binding of the CCAAT-transcription factor NF-Y to its promoter. Overexpression and/or amplification of TOP2A have been observed in many types of cancers. For this reason, TOP2A is the target of the most widely successful drugs in cancer chemotherapy, such as TOP2A poisons, which stabilize TOP2A-DNA cleavage complexes and create DSBs, leading to chromosome damage and cell death. We previously reported that the Curcumin-derivative bis-DemethoxyCurcumin (bDMC) is an anti-proliferative agent that inhibits cell growth by concomitant G1/S and G2/M arrest. Here we showed that bDMC irreversibly induces DSBs in cancer cells, but not in normal cells, by targeting TOP2A activity and expression. TOP2A ablation by siRNA corroborates its contribution to apoptosis induced by bDMC. Short-term exposure to bDMC induces retention of TOP2A-DNA intermediates, while longer exposure inhibits TOP2A transcription by affecting expression and sub-cellular localization of NF-Y subunits. ChIP analysis highlighted reduced recruitment of NF-Y to TOP2A regulatory regions, concomitantly to histone deacetylation and decreased gene transcription. Our findings suggest that the dual activity of bDMC on TOP2A represents a novel therapeutic strategy to induce persistent apoptosis in cancer cells and identify NF-Y regulation as a promising approach in anti-cancer therapy

    An acetylation-mono-ubiquitination switch on lysine 120 of H2B.

    Get PDF
    Post-translational modifications (PTMs) of histones are crucial for transcriptional control, defining positive and negative chromatin territories. A switch of opposing functional significance between acetylation and methylation occurs on many residues. Lysine 120 of H2B is modified by two PTMs: ubiquitination, which is required for further trans-tail H3 methylations and elongation, and acetylation, whose role is less clear. ChIP-Seq with MNase I-treated chromatin indicates that H2BK120ac is present on nucleosomes immediately surrounding the TSS of transcribed or poised units, but not in core promoters. In kinetic ChIP analysis of ER-stress inducible genes, H2BK120ac precedes activation and H2B-ub deposition. Using in vitro acetylation assays, pharmacologic inhibition and RNAi, we established that KAT3 is responsible for H2BK120ac. Interestingly, the global levels of H2B-ub decreased in KAT3-inactivated cells. However, RNF20 recruitment was not impaired by KAT3-inactivation. Our data point at acetylation of Lysine 120 of H2B as an early mark of poised or active state and establish a temporal sequence between acetylation and mono-ubiquitination of this H2B residue

    NF-Y loss triggers p53 stabilization and apoptosis in HPV18-positive cells by affecting E6 transcription

    Get PDF
    The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NFYA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response

    NF-Y co-associates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors.

    Get PDF
    NF-Y, a trimeric transcription factor (TF) composed of two histone-like subunits (NF-YB and NF-YC) and a sequence-specific subunit (NF-YA), binds to the CCAAT motif, a common promoter element. Genome-wide mapping reveals 5,000-15,000 NF-Y binding sites depending on the cell type, with the NF-YA and NF-YB subunits binding asymmetrically with respect to the CCAAT motif. Despite being characterized as a proximal promoter TF, only 25% of NF-Y sites map to promoters. A comparable number of NF-Y sites are located at enhancers, many of which are tissue specific, and nearly half of the NF-Y sites are in select subclasses of HERV LTR repeats. Unlike most TFs, NF-Y can access its target DNA motif in inactive (non-modified) or polycomb-repressed chromatin domains. Unexpectedly, NF-Y extensively co-localizes with FOS in all genomic contexts, and this often occurs in the absence of JUN and the AP-1 motif. NF-Y also co-associates with a select cluster of growth-controlling and oncogenic TFs, consistent with the abundance of CCAAT motifs in the promoters of genes overexpressed in cancer. Interestingly, NF-Y and several growth-controlling TFs bind in a stereo-specific manner, suggesting a mechanism for cooperative action at promoters and enhancers. Our results indicate that NF-Y is not merely a commonly-used, proximal promoter TF, but rather performs a more diverse set of biological functions, many of which are likely to involve co-association with FOS

    Epitranscriptomics as a New Layer of Regulation of Gene Expression in Skeletal Muscle: Known Functions and Future Perspectives

    Get PDF
    Epitranscriptomics refers to post-transcriptional regulation of gene expression via RNA modifications and editing that affect RNA functions. Many kinds of modifications of mRNA have been described, among which are N6-methyladenosine (m6A), N1-methyladenosine (m1A), 7-methylguanosine (m7G), pseudouridine (Ψ), and 5-methylcytidine (m5C). They alter mRNA structure and consequently stability, localization and translation efficiency. Perturbation of the epitranscriptome is associated with human diseases, thus opening the opportunity for potential manipulations as a therapeutic approach. In this review, we aim to provide an overview of the functional roles of epitranscriptomic marks in the skeletal muscle system, in particular in embryonic myogenesis, muscle cell differentiation and muscle homeostasis processes. Further, we explored high-throughput epitranscriptome sequencing data to identify RNA chemical modifications in muscle-specific genes and we discuss the possible functional role and the potential therapeutic applications

    Potent Anti-Cancer Properties of Phthalimide-Based Curcumin Derivatives on Prostate Tumor Cells

    Get PDF
    Metastatic castration-resistant prostate cancer is commonly treated with chemotherapy, whose effect is less than satisfactory. This raised the need for novel agents for the treatment of prostate cancer. In the present study, five phthalimide-based curcumin derivatives were synthesized and completely characterized to assess improved stability, pharmacodynamics, and radical scavenging ability. To investigate the potential application in anti-cancer therapy, the anti-proliferative activity of the synthesized molecules was determined on aggressive prostate tumor cells. We demonstrated that the K3F21 derivative has increased potency compared to curcumin, in terms of GI50, anti-proliferative and anti-migrating activities. K3F21 inhibits anchorage-dependent and -independent growth of prostate cancer cells by altering the expression of key genes controlling cell proliferation, such as Cylins D1, B1 and B2, and apoptosis, among which Puma, Noxa, and Bcl-2 family members. Finally, the anti-cancer activity of K3F21 was demonstrated by the analysis of cancer-associated PI3K/AKT, ERK, and p38 signaling pathways
    • …
    corecore