836 research outputs found
Plasma Processing of Large Curved Surfaces for SRF Cavity Modification
Plasma based surface modification of niobium is a promising alternative to
wet etching of superconducting radio frequency (SRF) cavities. The development
of the technology based on Cl2/Ar plasma etching has to address several crucial
parameters which influence the etching rate and surface roughness, and
eventually, determine cavity performance. This includes dependence of the
process on the frequency of the RF generator, gas pressure, power level, the
driven (inner) electrode configuration, and the chlorine concentration in the
gas mixture during plasma processing. To demonstrate surface layer removal in
the asymmetric non-planar geometry, we are using a simple cylindrical cavity
with 8 ports symmetrically distributed over the cylinder. The ports are used
for diagnosing the plasma parameters and as holders for the samples to be
etched. The etching rate is highly correlated with the shape of the inner
electrode, radio-frequency (RF) circuit elements, chlorine concentration in the
Cl2/Ar gas mixtures, residence time of reactive species and temperature of the
cavity. Using cylindrical electrodes with variable radius, large-surface
ring-shaped samples and d.c. bias implementation in the external circuit we
have demonstrated substantial average etching rates and outlined the
possibility to optimize plasma properties with respect to maximum surface
processing effect
Are deciduous upper molars and lower canines useful for sex estimation?
Objective: This paper investigates whether deciduous upper molars and lower canines have sexual dimorphic features, exploring these teeth' dimensions and the presence of Zuckerkandl's tubercle and Carabelli's cusp on the first and second upper molars.
Design: We analyzed 64 pairs of dental plaster casts from 34 females and 30 males aged between 3 and 12 years. We measured the first and second deciduous upper molars and the lower deciduous canines (maximum mesiodistal and buccolingual length), and we registered the presence of the Zuckerkandl's tubercle and the Carabelli's cusp on the first and second upper molars, respectively.
Results: Regarding the differentiation between sexes using Carabelli's cusp and Zuckerkandl's tubercle, the classification was not independent of Carabelli's cusp presence only for tooth 65 (p = 0.035). In all other teeth, whether for Carabelli's cusp or Zuckerkandl's tubercle, their presence was similar for both sexes. There were statistically significant differences between sexes (p < 0.05) for the buccolingual measurements of both upper second molars, the first right upper molar, and the right canine. The developed model allowed for a 64.1% accuracy in sex estimation.
Conclusions: The study suggests that while Carabelli's cusp and Zuckerkandl's tubercle in upper deciduous molars don't consistently differ between sexes, tooth size, particularly the buccolingual measurements of certain teeth, including upper deciduous molars and lower canines, may provide a more reliable criterion for sex estimation. The developed model depicted moderate accuracy, underscoring the need for a multifactorial approach when estimating sex from skeletal remains. It suggests that while dental features can contribute to sex estimation, they should be used in conjunction with other skeletal or molecular markers to improve accuracy
Plasma Processing of Large Curved Surfaces for Superconducting rf Cavity Modification
Plasma-based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. We have demonstrated surface layer removal in an asymmetric nonplanar geometry, using a simple cylindrical cavity. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (rf) circuit elements, gas pressure, rf power, chlorine concentration in the Cl2/Ar gas mixtures, residence time of reactive species, and temperature of the cavity. Using variable radius cylindrical electrodes, large-surface ring-shaped samples, and dc bias in the external circuit, we have measured substantial average etching rates and outlined the possibility of optimizing plasma properties with respect to maximum surface processing effect
Experiment and Results on Plasma Etching of SRF Cavities
The inner surfaces of SRF cavities are currently chemically treated (etched or electro polished) to achieve the state of the art RF performance. We designed an apparatus and developed a method for plasma etching of the inner surface for SRF cavities. The process parameters (pressure, power, gas concentration, diameter and shape of the inner electrode, temperature and positive dc bias at inner electrode) are optimized for cylindrical geometry. The etch rate non-uniformity has been overcome by simultaneous translation of the gas point-of-entry and the inner electrode during the processing. A single cell SRF cavity has been centrifugally barrel polished, chemically etched and RF tested to establish a baseline performance. This cavity is plasma etched and RF tested afterwards. The effect of plasma etching on the RF performance of this cavity will be presented and discussed
Cryogenic rf Test of the First SRF Cavity Etched in an rf Ar/Cl2 Plasma
An apparatus and a method for etching of the inner surfaces of superconducting radio frequency (SRF) accelerator cavities are described. The apparatus is based on the reactive ion etching performed in an Ar/Cl2 cylindrical capacitive discharge with reversed asymmetry. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity was used. The single cell cavity was mechanically polished and buffer chemically etched and then rf tested at cryogenic temperatures to provide a baseline characterization. The cavity\u27s inner wall was then exposed to the capacitive discharge in a mixture of Argon and Chlorine. The inner wall acted as the grounded electrode, while kept at elevated temperature. The processing was accomplished by axially moving the dc-biased, corrugated inner electrode and the gas flow inlet in a step-wise manner to establish a sequence of longitudinally segmented discharges. The cavity was then tested in a standard vertical test stand at cryogenic temperatures. The rf tests and surface condition results, including the electron field emission elimination, are presented
Evaluating the Combined Effectiveness of Influenza Control Strategies and Human Preventive Behavior
Control strategies enforced by health agencies are a major type of practice to contain influenza outbreaks. Another type of practice is the voluntary preventive behavior of individuals, such as receiving vaccination, taking antiviral drugs, and wearing face masks. These two types of practices take effects concurrently in influenza containment, but little attention has been paid to their combined effectiveness. This article estimates this combined effectiveness using established simulation models in the urbanized area of Buffalo, NY, USA. Three control strategies are investigated, including: Targeted Antiviral Prophylaxis (TAP), workplace/school closure, community travel restriction, as well as the combination of the three. All control strategies are simulated with and without regard to individual preventive behavior, and the resulting effectiveness are compared. The simulation outcomes suggest that weaker control strategies could suffice to contain influenza epidemics, because individuals voluntarily adopt preventive behavior, rendering these weaker strategies more effective than would otherwise have been expected. The preventive behavior of individuals could save medical resources for control strategies and avoid unnecessary socio-economic interruptions. This research adds a human behavioral dimension into the simulation of control strategies and offers new insights into disease containment. Health policy makers are recommended to review current control strategies and comprehend preventive behavior patterns of local populations before making decisions on influenza containment
- …