3 research outputs found

    Neuroprotective Strategies in Hippocampal Neurodegeneration induced by the Neurotoxicant Trimethyltin. Neurochemical Research

    No full text
    The selective vulnerability of specific neuronal subpopulations to trimethyltin (TMT), an organotin compound with neurotoxicant effects selectively involving the limbic system and especially marked in the hippocampus, makes it useful to obtain in vivo models of neurodegeneration associated with behavioural alterations, such as hyperactivity and aggression, cognitive impairment as well as temporal lobe epilepsy. TMT has been widely used to study neuronal and glial factors involved in selective neuronal death, as well as the molecular mechanisms leading to hippocampal neurodegeneration (including neuroinflammation, excitotoxicity, intracellular calcium overload, mitochondrial dysfunction and oxidative stress). It also offers a valuable instrument to study the cell-cell interactions and signalling pathways that modulate injury-induced neurogenesis, including the involvement of newly generated neurons in the possible repair processes. Since TMT appears to be a useful tool to damage the brain and study the various responses to damage, this review summarises current data from in vivo and in vitro studies on neuroprotective strategies to counteract TMT-induced neuronal death, that may be useful to elucidate the role of putative candidates for translational medical research on neurodegenerative diseases

    Proline Metabolism and Its Functions in Development and Stress Tolerance

    No full text
    Proline takes an exceptional place among the proteinogenic amino acids by its specific accumulation in pollen and in response to multiple types of stress. Despite the more than 50 years of research, the biochemical pathways of proline biosynthesis and degradation still await their complete characterization in plants. Also, the molecular and physiological functions of proline metabolism in plant development and defense against stress are not yet fully understood. This chapter focuses on the current knowledge about the biochemical pathways of proline metabolism in plants, on its tissue-specific regulation and subcellular compartmentation, and on still open questions. Furthermore, we will summarize what is known about the influence of proline metabolism on plant development under optimal growth conditions and how it may support continued development despite the impact of stress. The cognate chapter “Regulation of Proline Accumulation and its molecular and physiological Functions in Stress Defense” will focus on the possible beneficial functions of proline metabolism and accumulation in the defense response against diverse stresses. With these two cohesive chapters, we aim to provide a comprehensive picture of the current knowledge and the open research questions in proline-dependent stress defense
    corecore