798 research outputs found

    Fibre bundle formulation of relativistic quantum mechanics. I. Time-dependent approach

    Full text link
    We propose a new fibre bundle formulation of the mathematical base of relativistic quantum mechanics. At the present stage the bundle form of the theory is equivalent to its conventional one, but it admits new types of generalizations in different directions. In the present first part of our investigation we consider the time-dependent or Hamiltonian approach to bundle description of relativistic quantum mechanics. In it the wavefunctions are replaced by (state) liftings of paths or sections along paths of a suitably chosen vector bundle over space-time whose (standard) fibre is the space of the wavefunctions. Now the quantum evolution is described as a linear transportation (by means of the evolution transport along paths in the space-time) of the state liftings/sections in the (total) bundle space. The equations of these transportations turn to be the bundle versions of the corresponding relativistic wave equations.Comment: 16 standard LaTeX pages. The packages AMS-LaTeX and amsfonts are required. The paper continuous the application of fibre bundle formalism to quantum physics began in the series of works quant-ph/9803083, quant-ph/9803084, quant-ph/9804062, quant-ph/9806046, quant-ph/9901039, quant-ph/9902068, and quant-ph/0004041. For related papers, view http://theo.inrne.bas.bg/~bozho

    Raman and Infrared-Active Phonons in Hexagonal HoMnO3_3 Single Crystals: Magnetic Ordering Effects

    Full text link
    Polarized Raman scattering and infrared reflection spectra of hexagonal HoMnO3_3 single crystals in the temperature range 10-300 K are reported. Group-theoretical analysis is performed and scattering selection rules for the second order scattering processes are presented. Based on the results of lattice dynamics calculations, performed within the shell model, the observed lines in the spectra are assigned to definite lattice vibrations. The magnetic ordering of Mn ions, which occurs below TN_N=76 K, is shown to effect both Raman- and infrared-active phonons, which modulate Mn-O-Mn bonds and, consequently, Mn exchange interaction.Comment: 8 pages, 6 figure

    Transformation laws of the components of classical and quantum fields and Heisenberg relations

    Full text link
    The paper recalls and point to the origin of the transformation laws of the components of classical and quantum fields. They are considered from the "standard" and fibre bundle point of view. The results are applied to the derivation of the Heisenberg relations in quite general setting, in particular, in the fibre bundle approach. All conclusions are illustrated in a case of transformations induced by the Poincar\'e group.Comment: 22 LaTeX pages. The packages AMS-LaTeX and amsfonts are required. For other papers on the same topic, view http://theo.inrne.bas.bg/~bozho/ . arXiv admin note: significant text overlap with arXiv:0809.017

    Auto-parallel equation as Euler-Lagrange's equation in spaces with affine connections and metrics

    Full text link
    The auto-parallel equation over spaces with affine connections and metrics is considered as a result of the application of the method of Lagrangians with covariant derivatives (MLCD) on a given Lagrangian density.Comment: 19 pages, LaTe

    Quasi-static relaxation of arbitrarily shaped sessile drops

    Get PDF
    International audienceWe study a spontaneous relaxation dynamics of arbitrarily shaped liquid drops on solid surfaces in the partial wetting regime. It is assumed that the energy dissipated near the contact line is much larger than that in the bulk of the fluid. We have shown rigorously in the case of quasi-static relaxation using the standard mechanical description of dissipative system dynamics that the introduction of a dissipation term proportional to the contact line length leads to the well known local relation between the contact line velocity and the dynamic contact angle at every point of an arbitrary contact line shape. A numerical code is developed for 3D drops to study the dependence of the relaxation dynamics on the initial drop shape. The available asymptotic solutions are tested against the obtained numerical data. We show how the relaxation at a given point of the contact line is influenced by the dynamics of the whole drop which is a manifestation of the non-loca
    corecore