30 research outputs found

    Node of Ranvier length as a potential regulator of myelinated axon conduction speed

    Get PDF
    Myelination speeds conduction of the nerve impulse, enhancing cognitive power. Changes of white matter structure contribute to learning, and are often assumed to reflect an altered number of myelin wraps. We now show that, in rat optic nerve and cerebral cortical axons, the node of Ranvier length varies over a 4.4-fold and 8.7-fold range respectively and that variation of the node length is much less along axons than between axons. Modelling predicts that these node length differences will alter conduction speed by ~20%, similar to the changes produced by altering the number of myelin wraps or the internode length. For a given change of conduction speed, the membrane area change needed at the node is >270-fold less than that needed in the myelin sheath. Thus, axon-specific adjustment of node of Ranvier length is potentially an energy-efficient and rapid mechanism for tuning the arrival time of information in the CNS

    Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    Get PDF
    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca(2+). Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca(2+)-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca(2+) in astrocytic processes. Thus, the regulation of intracellular Ca(2+) signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca(2+) wave propagation, gliotransmission, and ultimately neuronal function

    Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length

    Get PDF
    Adjusting the thickness and internodal length of the myelin sheath is a mechanism for tuning the conduction velocity of axons to match computational needs. Interactions between oligodendrocyte precursor cells (OPCs) and developing axons regulate the formation of myelin around axons. We now show, using organotypic cerebral cortex slices from mice expressing eGFP in Sox10-positive oligodendrocytes, that endogenously released GABA, acting on GABAA receptors, greatly reduces the number of oligodendrocyte lineage cells. The decrease in oligodendrocyte number correlates with a reduction in the amount of myelination but also an increase in internode length, a parameter previously thought to be set by the axon diameter or to be a property intrinsic to oligodendrocytes. Importantly, while TTX block of neuronal activity had no effect on oligodendrocyte lineage cell number when applied alone, it was able to completely abolish the effect of blocking GABAA receptors, suggesting that control of myelination by endogenous GABA may require a permissive factor to be released from axons. In contrast, block of AMPA/KA receptors had no effect on oligodendrocyte lineage cell number or myelination. These results imply that, during development, GABA can act as a local environmental cue to control myelination and thus influence the conduction velocity of action potentials within the CNS. GLIA 2017;65:309-321

    Microglial ramification, surveillance and interleukin-1beta release are regulated by the two-pore domain K+ channel THIK-1

    Get PDF
    Microglia exhibit two modes of motility: they constantly extend and retract their processes to survey the brain, but they also send out targeted processes to envelop sites of tissue damage. We now show that these motility modes differ mechanistically. We identify the two-pore domain channel THIK-1 as the main K+ channel expressed in microglia in situ. THIK-1 is tonically active, and its activity is potentiated by P2Y12 receptors. Inhibiting THIK-1 function pharmacologically or by gene knockout depolarizes microglia, which decreases microglial ramification and thus reduces surveillance, whereas blocking P2Y12 receptors does not affect membrane potential, ramification, or surveillance. In contrast, process outgrowth to damaged tissue requires P2Y12 receptor activation but is unaffected by blocking THIK-1. Block of THIK-1 function also inhibits release of the pro-inflammatory cytokine interleukin-1β from activated microglia, consistent with K+ loss being needed for inflammasome assembly. Thus, microglial immune surveillance and cytokine release require THIK-1 channel activity

    Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma

    Get PDF
    Background: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca 2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca 2+ channel inhibitor Lomerizine (Lom), the Ca 2+ permeable AMPA receptor inhibitor YM872 and the P2X 7 receptor inhibitor oxATP. Results: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. Conclusions: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs

    Neuron-glial Interactions

    Get PDF
    Although lagging behind classical computational neuroscience, theoretical and computational approaches are beginning to emerge to characterize different aspects of neuron-glial interactions. This chapter aims to provide essential knowledge on neuron-glial interactions in the mammalian brain, leveraging on computational studies that focus on structure (anatomy) and function (physiology) of such interactions in the healthy brain. Although our understanding of the need of neuron-glial interactions in the brain is still at its infancy, being mostly based on predictions that await for experimental validation, simple general modeling arguments borrowed from control theory are introduced to support the importance of including such interactions in traditional neuron-based modeling paradigms.Junior Leader Fellowship Program by “la Caixa” Banking Foundation (LCF/BQ/LI18/11630006

    Neuron-Glial Interactions

    Full text link
    Although lagging behind classical computational neuroscience, theoretical and computational approaches are beginning to emerge to characterize different aspects of neuron-glial interactions. This chapter aims to provide essential knowledge on neuron-glial interactions in the mammalian brain, leveraging on computational studies that focus on structure (anatomy) and function (physiology) of such interactions in the healthy brain. Although our understanding of the need of neuron-glial interactions in the brain is still at its infancy, being mostly based on predictions that await for experimental validation, simple general modeling arguments borrowed from control theory are introduced to support the importance of including such interactions in traditional neuron-based modeling paradigms.Comment: 43 pages, 2 figures, 1 table. Accepted for publication in the "Encyclopedia of Computational Neuroscience," D. Jaeger and R. Jung eds., Springer-Verlag New York, 2020 (2nd edition

    Mechanisms of sodium channel clustering and its influence on axonal impulse conduction

    Get PDF
    corecore