29 research outputs found

    Insulin-like growth factor 1 modulates bioengineered tooth morphogenesis

    Get PDF
    Regenerative therapy to replace missing teeth is a critical area of research. Functional bioengineered teeth have been produced by the organ germ method using mouse tooth germ cells. However, these bioengineered teeth are significantly smaller in size and exhibit an abnormal crown shape when compared with natural teeth. The proper sizes and shapes of teeth contribute to their normal function. Therefore, a method is needed to control the morphology of bioengineered teeth. Here, we investigated whether insulin-like growth factor 1 (IGF1) can regulate the sizes and shapes of bioengineered teeth, and assessed underlying mechanisms of such regulation. IGF1 treatment significantly increased the size of bioengineered tooth germs, while preserving normal tooth histology. IGF1-treated bioengineered teeth, which were developed from bioengineered tooth germs in subrenal capsules and jawbones, showed increased sizes and cusp numbers. IGF1 increased the number of fibroblast growth factor (Fgf4)-expressing enamel knots in bioengineered tooth germs and enhanced the proliferation and differentiation of dental epithelial and mesenchymal cells. This study is the first to reveal that IGF1 increases the sizes and cusp numbers of bioengineered teeth via the induction of enamel knot formation, as well as the proliferation and differentiation of dental epithelial and mesenchymal cells

    Age control of the first appearance datum for Javanese Homo erectus in the Sangiran area

    Get PDF
    The chronology of the World Heritage Site of Sangiran in Indonesia is crucial for the understanding of human dispersals and settlement in Asia in the Early Pleistocene (before 780,000 years ago). It has been controversial, however, especially regarding the timing of the earliest hominin migration into the Sangiran region. We use a method of combining fission-track and uranium-lead dating and present key ages to calibrate the lower (older) Sangiran hominin-bearing horizons. We conclude that the first appearance datum for the Sangiran hominins is most likely ~1.3 million years ago and less than 1.5 million years ago, which is markedly later than the dates that have been widely accepted for the past two decades

    Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates airway epithelial barrier integrity

    Get PDF
    Background: Inhaled corticosteroids enhance airway epithelial barrier integrity. However, the mechanism by which they accomplish this is unclear. Therefore, we investigated steroid-inducible genes and signaling pathways that were involved in enhancing airway epithelial barrier integrity. Methods: A human bronchial epithelial cell line (16HBE cells) was cultured with 10−6 M dexamethasone (DEX) for 3 days to enhance epithelial barrier integrity. After measuring transepithelial electrical resistance (TER) and paracellular permeability, we extracted total RNA from 16HBE cells and performed microarray and pathway analysis. After we identified candidate genes and a canonical pathway, we measured TER and immunostained for tight junction (TJ) and adherent junction (AJ) proteins in cells that had been transfected with specific small interfering RNAs (siRNAs) for these genes. Results: We identified a nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response pathway which was primarily involved in the steroid-induced enhancement of airway epithelial barrier integrity. Transfecting cells with Nrf2 specific siRNA reduced the steroid-induced enhancement of airway epithelial barrier integrity and the accumulation of TJ and AJ proteins at sites of cell–cell contact. Moreover, based on pathway analysis, aldehyde oxidase 1 (AOX1) was identified as a downstream enzyme of Nrf2. Transfecting cells with AOX1-specific siRNA also reduced the steroid-induced enhancement of airway epithelial barrier integrity. Conclusions: Our results indicated that the Nrf2/AOX1 pathway was important for enhancing airway epithelial barrier integrity. Because the airway epithelium of asthmatics is susceptible to reduced barrier integrity, this pathway might be a new therapeutic target for asthma
    corecore