23 research outputs found

    Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes.

    Get PDF
    Abstract BACKGROUND: The cardiovascular effects of adding once-weekly treatment with exenatide to usual care in patients with type 2 diabetes are unknown. METHODS: We randomly assigned patients with type 2 diabetes, with or without previous cardiovascular disease, to receive subcutaneous injections of extended-release exenatide at a dose of 2 mg or matching placebo once weekly. The primary composite outcome was the first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. The coprimary hypotheses were that exenatide, administered once weekly, would be noninferior to placebo with respect to safety and superior to placebo with respect to efficacy. RESULTS: In all, 14,752 patients (of whom 10,782 [73.1%] had previous cardiovascular disease) were followed for a median of 3.2 years (interquartile range, 2.2 to 4.4). A primary composite outcome event occurred in 839 of 7356 patients (11.4%; 3.7 events per 100 person-years) in the exenatide group and in 905 of 7396 patients (12.2%; 4.0 events per 100 person-years) in the placebo group (hazard ratio, 0.91; 95% confidence interval [CI], 0.83 to 1.00), with the intention-to-treat analysis indicating that exenatide, administered once weekly, was noninferior to placebo with respect to safety (P<0.001 for noninferiority) but was not superior to placebo with respect to efficacy (P=0.06 for superiority). The rates of death from cardiovascular causes, fatal or nonfatal myocardial infarction, fatal or nonfatal stroke, hospitalization for heart failure, and hospitalization for acute coronary syndrome, and the incidence of acute pancreatitis, pancreatic cancer, medullary thyroid carcinoma, and serious adverse events did not differ significantly between the two groups. CONCLUSIONS: Among patients with type 2 diabetes with or without previous cardiovascular disease, the incidence of major adverse cardiovascular events did not differ significantly between patients who received exenatide and those who received placebo. (Funded by Amylin Pharmaceuticals; EXSCEL ClinicalTrials.gov number, NCT01144338 .)

    Specificity of the ergothioneine transporter natively expressed in HeLa cells

    No full text
    10.1016/j.bbrc.2019.02.122Biochemical and Biophysical Research Communications513122-2

    Changes in the proteome of the human intervertebral disc in aging and degeneration

    No full text
    Symposium in Honor of Patrick Tam FRS "60 Years & Still Gastrulating"Conference Theme: From Embryology to Disease Mechanism

    Protein and gene expression profiles of the intervertebral disc: in health and disease

    No full text
    The 2009 Gordon Conference on Cartilage Biology and Pathology, Les Diablerets, Switzerland, 7-12 June 2009

    Label-free quantitative proteomics reveals survival mechanisms developed by hypertrophic chondrocytes under ER stress

    No full text
    Emerging evidence implicates ER stress caused by unfolded mutant proteins in chondrocytes as the underlying pathology of chondrodysplasias. ER stress is triggered in hypertrophic chondrocytes (HCs) in a mouse model (13del) of metaphyseal chondrodysplasia type Schmid (MCDS) caused by misfolded mutant collagen X proteins, but the HCs do not undergo apoptosis, rather chondrocyte differentiation is altered causing skeletal abnormality. How 13del HCs can escape from apoptosis and survive ER stress is not understood. Here, we compared the proteomes of HCs isolated from 13del growth plates with normal HCs, using label-free quantitative mass spectrometry approach. Pathway enrichment analyses of differentially expressed proteins showed significant changes in glycolysis and ER-mitochondria pathways in 13del HCs, as well as in ATDC5 cell lines expressing wt and 13del collagen X. In vivo, we showed expression of mitochondrial calcium channels was reduced while mitochondrial membrane polarity was maintained in 13del chondrocytes, while in vitro, glucose uptake was maintained. We propose 13del HCs survive by a mechanism whereby changes in ER-mitochondria communication reduce import of calcium coupled with maintenance of mitochondrial membrane polarity. These findings provide the initial insights to our understanding of growth plate changes caused by protein misfolding in the pathogenesis of chondrodysplasia
    corecore