24 research outputs found

    A nucleotide binding rectification Brownian ratchet model for translocation of Y-family DNA polymerases

    Get PDF
    Y-family DNA polymerases are characterized by low-fidelity synthesis on undamaged DNA and ability to catalyze translesion synthesis over the damaged DNA. Their translocation along the DNA template is an important event during processive DNA synthesis. In this work we present a Brownian ratchet model for this translocation, where the directed translocation is rectified by the nucleotide binding to the polymerase. Using the model, different features of the available structures for Dpo4, Dbh and polymerase ι in binary and ternary forms can be easily explained. Other dynamic properties of the Y-family polymerases such as the fast translocation event upon dNTP binding for Dpo4 and the considerable variations of the processivity among the polymerases can also be well explained by using the model. In addition, some predicted results of the DNA synthesis rate versus the external force acting on Dpo4 and Dbh polymerases are presented. Moreover, we compare the effect of the external force on the DNA synthesis rate of the Y-family polymerase with that of the replicative DNA polymerase

    A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans

    Get PDF
    Sequencing of the complete genome of Ignicoccus hospitalis gives insight into its association with another species of Archaea, Nanoarchaeum equitans

    Clamp loader ATPases and the evolution of DNA replication machinery

    Get PDF
    Clamp loaders are pentameric ATPases of the AAA+ family that operate to ensure processive DNA replication. They do so by loading onto DNA the ring-shaped sliding clamps that tether the polymerase to the DNA. Structural and biochemical analysis of clamp loaders has shown how, despite differences in composition across different branches of life, all clamp loaders undergo the same concerted conformational transformations, which generate a binding surface for the open clamp and an internal spiral chamber into which the DNA at the replication fork can slide, triggering ATP hydrolysis, release of the clamp loader, and closure of the clamp round the DNA. We review here the current understanding of the clamp loader mechanism and discuss the implications of the differences between clamp loaders from the different branches of life

    Communication between subunits within an archaeal clamp-loader complex

    No full text
    We have investigated the communication between subunits in replication factor C (RFC) from Archaeoglobus fulgidus. Mutation of the proposed arginine finger in the small subunits results in a complex that can still bind ATP but has impaired clamp-loading activity, a process that normally only requires binding of nucleotide. The small subunit alone forms a hexameric ring that is six-fold symmetric in the absence of ATP. However, this symmetry is broken when the nucleotide is bound to the complex. A conformational change associated with nucleotide binding may relate to the opening of PCNA rings by RFC during the loading reaction. The structures also reveal the importance of the N-terminal helix of each subunit at the ATP-binding site. Analysis of mutant protein complexes containing subunits lacking this N-terminal helix reveals key distinct regulatory roles during clamp loading that are different for the large and small subunits in the RFC complex
    corecore