7 research outputs found

    Diversification and Molecular Evolution of ATOH8, a Gene Encoding a bHLH Transcription Factor

    Get PDF
    ATOH8 is a bHLH domain transcription factor implicated in the development of the nervous system, kidney, pancreas, retina and muscle. In the present study, we collected sequence of ATOH8 orthologues from 18 vertebrate species and 24 invertebrate species. The reconstruction of ATOH8 phylogeny and sequence analysis showed that this gene underwent notable divergences during evolution. For those vertebrate species investigated, we analyzed the gene structure and regulatory elements of ATOH8. We found that the bHLH domain of vertebrate ATOH8 was highly conserved. Mammals retained some specific amino acids in contrast to the non-mammalian orthologues. Mammals also developed another potential isoform, verified by a human expressed sequence tag (EST). Comparative genomic analyses of the regulatory elements revealed a replacement of the ancestral TATA box by CpG-islands in the eutherian mammals and an evolutionary tendency for TATA box reduction in vertebrates in general. We furthermore identified the region of the effective promoter of human ATOH8 which could drive the expression of EGFP reporter in the chicken embryo. In the opossum, both the coding region and regulatory elements of ATOH8 have some special features, such as the unique extended C-terminus encoded by the third exon and absence of both CpG islands and TATA elements in the regulatory region. Our gene mapping data showed that in human, ATOH8 was hosted in one chromosome which is a fusion product of two orthologous chromosomes in non-human primates. This unique chromosomal environment of human ATOH8 probably subjects its expression to the regulation at chromosomal level. We deduce that the great interspecific differences found in both ATOH8 gene sequence and its regulatory elements might be significant for the fine regulation of its spatiotemporal expression and roles of ATOH8, thus orchestrating its function in different tissues and organisms

    Primary cilia in neurodevelopmental disorders.

    No full text
    Primary cilia are generally solitary organelles that emanate from the surface of almost all vertebrate cell types. Until recently, details regarding the function of these structures were lacking; however, extensive evidence now suggests that primary cilia have critical roles in sensing the extracellular environment, and in coordinating developmental and homeostatic signalling pathways. Furthermore, disruption of these functions seems to underlie a diverse spectrum of disorders, known as primary ciliopathies. These disorders are characterized by wide-ranging clinical and genetic heterogeneity, but with substantial overlap among distinct conditions. Indeed, ciliopathies are associated with a large variety of manifestations that often include distinctive neurological findings. Herein, we review neurological features associated with primary ciliopathies, highlight genotype-phenotype correlations, and discuss potential mechanisms underlying these findings
    corecore