14 research outputs found

    Flow Coherence: Distinguishing Cause from Effect

    No full text
    The geodesic transport theory unveils the especial fluid trajectory sets, referred to as Lagrangian Coherent Structures (LCS), that cause a flow to organize into ordered patterns. This is illustrated through the analysis of an oceanic flow dataset and contrasted with the tendency of a widely used flow diagnostic to carry coherence imprints as an effect of the influence of LCS on neighboring fluid trajectories

    Southward spreading of the Fukushima-derived radiocesium across the Kuroshio Extension in the North Pacific

    No full text
    The accident of the Fukushima Dai-ichi nuclear power plant in March 2011 released a large amount of radiocesium into the North Pacific Ocean. Vertical distributions of Fukushima-derived radiocesium were measured at stations along the 149°E meridian in the western North Pacific during the winter of 2012. In the subtropical region, to the south of the Kuroshio Extension, we found a subsurface radiocesium maximum at a depth of about 300 m. It is concluded that atmospheric-deposited radiocesium south of the Kuroshio Extension just after the accident had been transported not only eastward along with surface currents but also southward due to formation/subduction of subtropical mode waters within about 10 months after the accident. The total amount of decay-corrected 134Cs in the mode water was an estimated about 6 PBq corresponding to 10–60% of the total inventory of Fukushima-derived 134Cs in the North Pacific Ocean

    Interdecadal North-Atlantic meridional overturning circulation variability in EC-EARTH

    No full text
    The Atlantic meridional overturning circulation (AMOC) in a 600 years pre-industrial run of the newly developed EC-EARTH model features marked interdecadal variability with a dominant time-scale of 50–60 years. An oscillation of approximately 2 Sverdrup (1 Sv = 106 m3 s?1) is identified, which manifests itself as a monopole causing the overturning to simultaneously strengthen (/weaken) and deepen (/shallow) as a whole. Eight years before the AMOC peaks, density in the Labrador-Irminger Sea region reaches a maximum, triggering deep water formation. This density change is caused by a counterclockwise advection of temperature and salinity anomalies at lower latitudes, which we relate to the north-south excursions of the subpolar-subtropical gyre boundary and variations in strength and position of the subpolar gyre and the North Atlantic Current. The AMOC fluctuations are not directly forced by the atmosphere, but occur in a delayed response of the ocean to forcing by the North Atlantic Oscillation, which initiates “intergyre”-gyre fluctuations. Associated with the AMOC is a 60-year sea surface temperature variability in the Atlantic, with a pattern and timescale showing similarities with the real-world Atlantic Multidecadal Variability. This good agreement with observations lends a certain degree of credibility that the mechanism that is described in this article could be seen as representative of the real climate system
    corecore