39 research outputs found
A possible method for non-Hermitian and non--symmetric Hamiltonian systems
A possible method to investigate non-Hermitian Hamiltonians is suggested
through finding a Hermitian operator and defining the annihilation and
creation operators to be -pseudo-Hermitian adjoint to each other. The
operator represents the -pseudo-Hermiticity of Hamiltonians.
As an example, a non-Hermitian and non--symmetric Hamiltonian with
imaginary linear coordinate and linear momentum terms is constructed and
analyzed in detail. The operator is found, based on which, a real
spectrum and a positive-definite inner product, together with the probability
explanation of wave functions, the orthogonality of eigenstates, and the
unitarity of time evolution, are obtained for the non-Hermitian and
non--symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be
coupled when it is extended to the canonical noncommutative space with
noncommutative spatial coordinate operators and noncommutative momentum
operators as well. Our method is applicable to the coupled Hamiltonian. Then
the first and second order noncommutative corrections of energy levels are
calculated, and in particular the reality of energy spectra, the
positive-definiteness of inner products, and the related properties (the
probability explanation of wave functions, the orthogonality of eigenstates,
and the unitarity of time evolution) are found not to be altered by the
noncommutativity.Comment: 15 pages, no figures; v2: clarifications added; v3: 16 pages, 1
figure, clarifications made clearer; v4: 19 pages, the main context is
completely rewritten; v5: 25 pages, title slightly changed, clarifications
added, the final version to appear in PLOS ON
Integrated genomic characterization of oesophageal carcinoma
Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies.ope
