14 research outputs found

    Mobilization of xanthine oxidase from the gastrointestinal tract in acute pancreatitis

    Get PDF
    BACKGROUND: Xanthine oxidoreductase has been proposed to play a role in the development of local and systemic effects of acute pancreatitis. Under physiologic conditions, the enzyme exists mainly as xanthine dehydrogenase (XDH) but can be converted by proteolytic cleavage to its superoxide-generating form xanthine oxidase (XOD). In addition to its intracellular location XDH/XOD is also associated to the polysaccharide chains of proteoglycans on the external endothelial cell membrane. In the early stages of acute pancreatitis, this enzyme seems to be arising from its mobilization from the gastrointestinal endothelial cell surface. Taking into account the ability of α-amylase to hydrolyze the internal α-1,4 linkages of polysaccharides, we wanted to elucidate the involvement of α-amylase in XDH/XOD mobilization from the gastrointestinal endothelial cell surface and the relevance of the ascitic fluid (AF) as the source of α-amylase in experimental acute pancreatitis. METHODS: Acute pancreatitis was induced in male Wistar rats by intraductal administration of 5% sodium taurocholate. In another experimental group 3000 U/Kg α-amylase was i.v. administered. The concentrations of XDH, XOD and α-amylase in plasma and AF and myeloperoxidase (MPO) in lung have been evaluated. In additional experiments, the effect of peritoneal lavage and the absorption of α-amylase present in the AF by an isolated intestine have been determined. RESULTS: Similar increase in XDH+XOD activity in plasma was observed after induction of acute pancreatitis and after i.v. administration of α-amylase. Nevertheless, the conversion from XDH to XOD was only observed in the pancreatitis group. Lung inflammation measured as MPO activity was observed only in the pancreatitis group. In addition peritoneal lavage prevented the increase in α-amylase and XDH+XOD in plasma after induction of pancreatitis. Finally, it was observed that α-amylase is absorbed from the AF by the intestine. CONCLUSIONS: During the early stages of acute pancreatitis, α-amylase absorbed from AF through the gastrointestinal tract could interfere with the binding of XDH/XOD attached to glycoproteins of the endothelial cells. Proteolytic enzymes convert XDH into its oxidase form promoting an increase in circulating XOD that has been reported to be one of the mechanisms involved in the triggering of the systemic inflammatory process

    In vivo imaging of human pancreatic microcirculation and pancreatic tissue injury in clinical pancreas transplantation

    Full text link
    Pancreatitis remains to be a major complication following clinical pancreas transplantation. We performed orthogonal polarized spectral (OPS) imaging for direct in vivo visualization and quantification of human pancreatic microcirculation in six healthy donors for living donor liver transplantation and 13 patients undergoing simultaneous pancreas-kidney transplantation. We further determined the impact of microvascular dysfunction during early reperfusion on pancreatic graft injury. Exocrine and endocrine pancreatic impairment was determined by analysis of serum lipase, amylase and C-peptide levels. Compared to normal pancreas in liver donors (homogeneous acinar perfusion) functional capillary density (FCD) and capillary red blood flow velocity of reperfused grafts were significantly decreased. Elevated CRP concentrations on day 2 post-transplant and serum lipase and amylase levels determined on days 4-5 significantly correlated with microvascular dysfunction during the first 30 min of graft reperfusion. Post-transplant serum C-peptide also correlated significantly with pancreatic capillary perfusion. OPS imaging allows to intra-operatively assess physiologic pancreatic microcirculation and to determine microcirculatory impairment during early graft reperfusion. This impairment correlated with the manifestation of post-transplant dysfunction of both exocrine and endocrine pancreatic tissue. OPS imaging may be used clinically to determine the efficacy of interventions, aiming at attenuating microcirculatory impairment during the acute post-transplant reperfusion phase
    corecore