3,256 research outputs found

    Theoretical Study on the Effects of Dislocations in Monolithic III-V Lasers on Silicon

    Get PDF
    In this work, we present an approach to modelling III-V lasers on silicon based on a travelling-wave rate equation model with sub-micrometer resolution. By allowing spatially resolved inclusion of individual dislocations along the laser cavity, our simulation results offer new insights into the physical mechanisms behind the characteristics of 980 nm In(Ga)As/GaAs quantum well (QW) and 1.3 mu quantum dot (QD) lasers grown on silicon. We identify two effects with particular importance for practical applications from studying the reduction of the local gain in carrier-depleted regions around dislocation locations and the resulting impact on threshold current increase and slope efficiency at high dislocation densities. First, a large minority carrier diffusion length is a key parameter inhibiting laser operation by enabling carrier migration into dislocations over larger areas, and secondly, increased gain in dislocation-free regions compensating for gain dips around dislocations may contribute to gain compression effects observed in directly modulated silicon-based QD lasers. We believe that this work is an important contribution in creating a better understanding of the processes limiting the capabilities of III-V lasers on silicon in order to explore suitable materials and designs for monolithic light sources for silicon photonics.Qualcomm Inc Studentshi

    Low latency optical switch for high performance computing with minimized processor energy load [Invited]

    Get PDF
    Power density and cooling issues are limiting the performance of high performance chip multiprocessors (CMPs), and off-chip communications currently consume more than 20% of power for memory, coherence, PCI, and Ethernet links. Photonic transceivers integrated with CMPs are being developed to overcome these issues, potentially allowing low hop count switched connections between chips or data center servers. However, latency in setting up optical connections is critically important in all computing applications, and having transceivers integrated on the processor chip also pushes other network functions and their associated power consumption onto the chip. In this paper, we propose a low latency optical switch architecture that minimizes the power consumed on the processor chip for two scenarios: multiple-socket shared memory coherence networks and optical top-of-rack switches for data centers. The switch architecture reduces power consumed on the CMP using a control plane with a simplified send and forget server interface and the use of a hybrid Mach–Zehnder interferometer and semiconductor optical amplifier integrated optical switch with electronic buffering. Results show that the proposed architecture offers a 42% reduction in head latency at low loads compared with a conventional scheduled optical switch as well as offering increased performance for streaming and incast traffic patterns. Power dissipated on the server chip is shown to be reduced by more than 60% compared with a scheduled optical switch architecture with ring resonator switching.This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) INTERNET program grant and an EPSRC Fellowship grant to Philip Watts. Both University College London and the University of Cambridge are members of GreenTouch.This paper was published in the Journal of Optical Communications and Networking and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/jocn/abstract.cfm?uri=jocn-7-3-A498. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law. This is the accepted manuscript of a paper published in the Journal of Optical Communications and Networking, Vol. 7, Issue 3, pp. A498-A510 (2015) http://dx.doi.org/10.1364/JOCN.7.00A49

    Putative β-Barrel Outer Membrane Proteins of the Bovine Digital Dermatitis-Associated Treponemes: Identification, Functional Characterization, and Immunogenicity

    Get PDF
    Bovine digital dermatitis (BDD), an infectious disease of the bovine foot with a predominant treponemal etiology, is a leading cause of lameness in dairy and beef herds worldwide. BDD is poorly responsive to antimicrobial therapy and exhibits a relapsing clinical course; an effective vaccine is therefore urgently sought. Using a reverse vaccinology approach, the present study surveyed the genomes of the three BDD-associated Treponema phylogroups for putative β-barrel outer membrane proteins and considered their potential as vaccine candidates. Selection criteria included the presence of a signal peptidase I cleavage site, a predicted β-barrel fold, and cross-phylogroup homology. Four candidate genes were overexpressed in Escherichia coli BL21(DE3), refolded, and purified. Consistent with their classification as β-barrel OMPs, circular-dichroism spectroscopy revealed the adoption of a predominantly β-sheet secondary structure. These recombinant proteins, when screened for their ability to adhere to immobilized extracellular matrix (ECM) components, exhibited a diverse range of ligand specificities. All four proteins specifically and dose dependently adhered to bovine fibrinogen. One recombinant protein was identified as a candidate diagnostic antigen (disease specificity, 75%). Finally, when adjuvanted with aluminum hydroxide and administered to BDD-naive calves using a prime-boost vaccination protocol, these proteins were immunogenic, eliciting specific IgG antibodies. In summary, we present the description of four putative treponemal β-barrel OMPs that exhibit the characteristics of multispecific adhesins. The observed interactions with fibrinogen may be critical to host colonization and it is hypothesized that vaccination-induced antibody blockade of these interactions will impede treponemal virulence and thus be of therapeutic value

    Gain switching of monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon

    Get PDF
    © 1983-2012 IEEE. We report the first demonstration of gain-switched optical pulses generated by continuous-wave 1.3 μm InAs/GaAs quantum dot (QD) broad-area lasers directly grown on silicon. The shortest observed pulses have typical durations between 175 and 200 ps with peak output powers of up to 66 mW. By varying the drive current pulsewidth and amplitude systematically, we find that the peak optical power is maximized through sufficiently long high-amplitude drive pulses, whereas shorter drive pulses with high amplitudes yield the narrowest achievable pulses. A three-level rate equation travelling-wave model is used for the simulation of our results in order to gain a first insight into the underlying physics and the laser parameters responsible for the observed behavior. The simulations indicate that a limited gain from the InAs QDs and a very high gain compression factor are the main factors contributing to the increased pulsewidth. As the optical spectra of the tested broad-area QD laser give a clear evidence of multitransverse-mode operation, the laser's dynamic response could be additionally limited by transversal variations of the gain, carrier density, and photon density over the 50 μm wide laser waveguide

    Identifying Critical States by the Action-Based Variance of Expected Return

    Full text link
    The balance of exploration and exploitation plays a crucial role in accelerating reinforcement learning (RL). To deploy an RL agent in human society, its explainability is also essential. However, basic RL approaches have difficulties in deciding when to choose exploitation as well as in extracting useful points for a brief explanation of its operation. One reason for the difficulties is that these approaches treat all states the same way. Here, we show that identifying critical states and treating them specially is commonly beneficial to both problems. These critical states are the states at which the action selection changes the potential of success and failure substantially. We propose to identify the critical states using the variance in the Q-function for the actions and to perform exploitation with high probability on the identified states. These simple methods accelerate RL in a grid world with cliffs and two baseline tasks of deep RL. Our results also demonstrate that the identified critical states are intuitively interpretable regarding the crucial nature of the action selection. Furthermore, our analysis of the relationship between the timing of the identification of especially critical states and the rapid progress of learning suggests there are a few especially critical states that have important information for accelerating RL rapidly.Comment: 12 pages, 6 figure

    Dynamic Properties of Monolithic 1.3 μm InAs/GaAs Quantum Dot Lasers on Silicon

    Get PDF
    Small-signal experiments with a 2.5 mm-long quantum dot narrow ridge-waveguide laser on silicon show a modulation bandwidth of 1.6 GHz. For the first time, we report key high-speed parameters such as the differential gain and the gain compression factor

    Understanding the bandwidth limitations in monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon

    Get PDF
    In this paper, we present measurements and simulations of the small-signal modulation response of monolithic continuous-wave 1.3 μm InAs/GaAs quantum dot (QD) narrow ridge-waveguide lasers on a silicon substrate. The 2.5 mm-long lasers investigated demonstrate 3dB modulation bandwidths of 1.6 GHz, D-factors of 0.3 GHz/mA1/2, modulation current efficiencies of 0.4 GHz/mA1/2, and K-factors of 2.4 ns and 3.7 ns. Since the devices under test are not designed for high-speed operation due to their long length and hence long photon lifetime, the modulation response curves are used as a fitting template for numerical simulations with spatiotemporal resolution to gain insight into the underlying laser physics. The obtained parameter set is used to unveil the true potential of the laser material in an optimized device geometry by modeling the small-signal response at different cavity lengths, mirror reflectivities, and for different numbers of QD layers. The simulations predict a maximum 3dB modulation bandwidth of 5 GHz to 7 GHz for a 0.75 mm-long cavity with 99 % and 60 % high-reflection coatings and ten QD layers. Modeling the impact of dislocations on the dynamic performance qualitatively reveals that enhanced non-radiative recombination in the wetting layer leaves the modulation bandwidth of QD lasers on silicon almost unaffected, while dislocation-induced optical loss does not pose a problem, as long as sufficient gain is provided by the QD active region.UK EPSRC Grant, No. EP/J012904/1 & EP/J012815/1 Qualcomm Inc. studentship Royal Academy of Engineering, Reference No. RF201617/16/2

    Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents

    Full text link
    We present a theory which explains how to achieve an enhancement of nonlinear effects in a thin layer of nonlinear medium by involving a planar periodic structure specially designed to bear a trapped-mode resonant regime. In particular, the possibility of a nonlinear thin metamaterial to produce the bistable response at a relatively low input intensity due to a large quality factor of the trapped-mode resonance is shown. Also a simple design of an all-dielectric low-loss silicon-based planar metamaterial which can provide an extremely sharp resonant reflection and transmission is proposed. The designed metamaterial is envisioned for aggregating with a pumped active medium to achieve an enhancement of quantum dots luminescence and to produce an all-dielectric analog of a 'lasing spaser'.Comment: 18 pages, 13 figure

    Costunolide causes mitotic arrest and enhances radiosensitivity in human hepatocellular carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>This work aimed to investigate the effect of costunolide, a sesquiterpene lactone isolated from <it>Michelia compressa</it>, on cell cycle distribution and radiosensitivity of human hepatocellular carcinoma (HCC) cells.</p> <p>Methods</p> <p>The assessment used in this study included: cell viability assay, cell cycle analysis by DNA histogram, expression of phosphorylated histone H3 (Ser 10) by flow cytometer, mitotic index by Liu's stain and morphological observation, mitotic spindle alignment by immunofluorescence of alpha-tubulin, expression of cell cycle-related proteins by Western blotting, and radiation survival by clonogenic assay.</p> <p>Results</p> <p>Our results show that costunolide reduced the viability of HA22T/VGH cells. It caused a rapid G2/M arrest at 4 hours shown by DNA histogram. The increase in phosphorylated histone H3 (Ser 10)-positive cells and mitotic index indicates costunolide-treated cells are arrested at mitosis, not G2, phase. Immunofluorescence of alpha-tubulin for spindle formation further demonstrated these cells are halted at metaphase. Costunolide up-regulated the expression of phosphorylated Chk2 (Thr 68), phosphorylated Cdc25c (Ser 216), phosphorylated Cdk1 (Tyr 15) and cyclin B1 in HA22T/VGH cells. At optimal condition causing mitotic arrest, costunolide sensitized HA22T/VGH HCC cells to ionizing radiation with sensitizer enhancement ratio up to 1.9.</p> <p>Conclusions</p> <p>Costunolide could reduce the viability and arrest cell cycling at mitosis in hepatoma cells. Logical exploration of this mitosis-arresting activity for cancer therapeutics shows costunolide enhanced the killing effect of radiotherapy against human HCC cells.</p

    Low-Energy Theorems from Holography

    Full text link
    In the context of gauge/gravity duality, we verify two types of gauge theory low-energy theorems, the dilation Ward identities and the decoupling of heavy flavor. First, we provide an analytic proof of non-trivial dilation Ward identities for a theory holographically dual to a background with gluon condensate (the self-dual Liu--Tseytlin background). In this way an important class of low-energy theorems for correlators of different operators with the trace of the energy-momentum tensor is established, which so far has been studied in field theory only. Another low-energy relationship, the so-called decoupling theorem, is numerically shown to hold universally in three holographic models involving both the quark and the gluon condensate. We show this by comparing the ratio of the quark and gluon condensates in three different examples of gravity backgrounds with non-trivial dilaton flow. As a by-product of our study, we also obtain gauge field condensate contributions to meson transport coefficients.Comment: 32 pages, 4 figures, two references added, typos remove
    corecore