21 research outputs found

    Gene Regulation and Epigenetic Remodeling in Murine Embryonic Stem Cells by c-Myc

    Get PDF
    BACKGROUND:The Myc oncoprotein, a transcriptional regulator involved in the etiology of many different tumor types, has been demonstrated to play an important role in the functions of embryonic stem (ES) cells. Nonetheless, it is still unclear as to whether Myc has unique target and functions in ES cells. METHODOLOGY/PRINCIPAL FINDINGS:To elucidate the role of c-Myc in murine ES cells, we mapped its genomic binding sites by chromatin-immunoprecipitation combined with DNA microarrays (ChIP-chip). In addition to previously identified targets we identified genes involved in pluripotency, early development, and chromatin modification/structure that are bound and regulated by c-Myc in murine ES cells. Myc also binds and regulates loci previously identified as Polycomb (PcG) targets, including genes that contain bivalent chromatin domains. To determine whether c-Myc influences the epigenetic state of Myc-bound genes, we assessed the patterns of trimethylation of histone H3-K4 and H3-K27 in mES cells containing normal, increased, and reduced levels of c-Myc. Our analysis reveals widespread and surprisingly diverse changes in repressive and activating histone methylation marks both proximal and distal to Myc binding sites. Furthermore, analysis of bulk chromatin from phenotypically normal c-myc null E7 embryos demonstrates a 70-80% decrease in H3-K4me3, with little change in H3-K27me3, compared to wild-type embryos indicating that Myc is required to maintain normal levels of histone methylation. CONCLUSIONS/SIGNIFICANCE:We show that Myc induces widespread and diverse changes in histone methylation in ES cells. We postulate that these changes are indirect effects of Myc mediated by its regulation of target genes involved in chromatin remodeling. We further show that a subset of PcG-bound genes with bivalent histone methylation patterns are bound and regulated in response to altered c-Myc levels. Our data indicate that in mES cells c-Myc binds, regulates, and influences the histone modification patterns of genes involved in chromatin remodeling, pluripotency, and differentiation

    New Cytotoxic Butanolides from Litsea acutivena

    No full text

    Genomics Study of Strains from Different Ethnic Populations in Taiwan

    No full text
    To better understand the transmission and evolution of Mycobacterium tuberculosis (MTB) in Taiwan, six different MTB isolates (representatives of the Beijing ancient sublineage, Beijing modern sublineage, Haarlem, East-African Indian, T1, and Latin-American Mediterranean (LAM)) were characterized and their genomes were sequenced. Discriminating among large sequence polymorphisms (LSPs) that occur once versus those that occur repeatedly in a genomic region may help to elucidate the biological roles of LSPs and to identify the useful phylogenetic relationships. In contrast to our previous LSP-based phylogeny, the sequencing data allowed us to determine actual genetic distances and to define precisely the phylogenetic relationships between the main lineages of the MTB complex. Comparative genomics analyses revealed more nonsynonymous substitutions than synonymous changes in the coding sequences. Furthermore, MTB isolate M7, a LAM-3 clinical strain isolated from a patient of Taiwanese aboriginal origin, is closely related to F11 (LAM), an epidemic tuberculosis strain isolated in the Western Cape of South Africa. The PE/PPE protein family showed a higher dn/ds ratio compared to that for all protein-coding genes. Finally, we found Haarlem-3 and LAM-3 isolates to be circulating in the aboriginal community in Taiwan, suggesting that they may have originated with post-Columbus Europeans. Taken together, our results revealed an interesting association with historical migrations of different ethnic populations, thus providing a good model to explore the global evolution and spread of MTB

    Clonal Expansion of Both Modern and Ancient Genotypes of <em>Mycobacterium tuberculosis</em> in Southern Taiwan

    Get PDF
    <div><p>We present the first comprehensive analysis of <em>Mycobacterium tuberculosis</em> isolates circulating in the Kaohsiung region of southern Taiwan. The major spoligotypes found in the 224 isolates studied were Beijing lineages (nβ€Š=β€Š97; 43.3%), EAI lineages (nβ€Š=β€Š72; 32.1%) and Haarlem lineages (nβ€Š=β€Š18; 8.0%). By 24 MIRU-VNTR typing, 174 patterns were identified, including 24 clusters of 74 isolates and 150 unique patterns. The combination of spoligotyping and 12-MIRU-VNTR revealed that 129 (57.6%) of the 224 isolates were clustered in 18 genotypes. Moreover, 63.6% (7/11) of infected persons younger than 30 years had a Beijing strain, which could suggest recent spread among younger persons by this family of TB strains in Kaohsiung. Among the 94 Beijing family (SIT1, SIT250 and SIT1674) isolates further analyzed for SNPs by mass spectrometry, the most frequent strain found was ST10 (nβ€Š=β€Š49; 52%), followed by ST22 (nβ€Š=β€Š17; 18%) and ST19 (nβ€Š=β€Š11; 12%). Among the EAI-Manila family isolates analyzed by region deletion-based subtyping, the most frequent strain found was RD type 1 (nβ€Š=β€Š63; 87.5%), followed by RD type 2 (nβ€Š=β€Š9; 12.5%). In our previous study, the proportion of modern Beijing strains (52.5%) in northern Taiwan was significantly higher than the proportion of EAI strains (11%). In contrast, in the present study, EAI strains comprised up to 32% of Beijing strains in southern Taiwan. In conclusion, both β€˜modern’ (Beijing) and β€˜ancient’ (EAI) <em>M. tuberculosis</em> strains are prevalent in the Kaohsiung region, perhaps suggesting that both strains are somehow more adapted to southern Taiwan. It will be interesting to investigate the dynamics of the lineage composition by different selection pressures.</p> </div
    corecore