7 research outputs found

    Multi-site investigation of strategies for the implementation of CYP2C19 genotype-guided antiplatelet therapy

    Get PDF
    CYP2C19 genotype-guided antiplatelet therapy following percutaneous coronary intervention is increasingly implemented in clinical practice. However, challenges such as selecting a testing platform, communicating test results, building clinical decision support processes, providing patient and provider education, and integrating methods to support the translation of emerging evidence to clinical practice are barriers to broad adoption. In this report, we compare and contrast implementation strategies of 12 early adopters, describing solutions to common problems and initial performance metrics for each program. Key differences between programs included the test result turnaround time and timing of therapy changes which are both related to CYP2C19 testing model and platform used. Sites reported the need for new informatics infrastructure, expert clinicians such as pharmacists to interpret results, physician champions, and ongoing education. Consensus lessons learned are presented to provide a path forward for those seeking to implement similar clinical pharmacogenomics programs within their institutions. This article is protected by copyright

    The IGNITE network: a model for genomic medicine implementation and research.

    No full text
    BACKGROUND: Patients, clinicians, researchers and payers are seeking to understand the value of using genomic information (as reflected by genotyping, sequencing, family history or other data) to inform clinical decision-making. However, challenges exist to widespread clinical implementation of genomic medicine, a prerequisite for developing evidence of its real-world utility. METHODS: To address these challenges, the National Institutes of Health-funded IGNITE (Implementing GeNomics In pracTicE; www.ignite-genomics.org ) Network, comprised of six projects and a coordinating center, was established in 2013 to support the development, investigation and dissemination of genomic medicine practice models that seamlessly integrate genomic data into the electronic health record and that deploy tools for point of care decision making. IGNITE site projects are aligned in their purpose of testing these models, but individual projects vary in scope and design, including exploring genetic markers for disease risk prediction and prevention, developing tools for using family history data, incorporating pharmacogenomic data into clinical care, refining disease diagnosis using sequence-based mutation discovery, and creating novel educational approaches. RESULTS: This paper describes the IGNITE Network and member projects, including network structure, collaborative initiatives, clinical decision support strategies, methods for return of genomic test results, and educational initiatives for patients and providers. Clinical and outcomes data from individual sites and network-wide projects are anticipated to begin being published over the next few years. CONCLUSIONS: The IGNITE Network is an innovative series of projects and pilot demonstrations aiming to enhance translation of validated actionable genomic information into clinical settings and develop and use measures of outcome in response to genome-based clinical interventions using a pragmatic framework to provide early data and proofs of concept on the utility of these interventions. Through these efforts and collaboration with other stakeholders, IGNITE is poised to have a significant impact on the acceleration of genomic information into medical practice

    Evaluation of Potential Racial Disparities in CYP2C19-Guided P2Y12 Inhibitor Prescribing After Percutaneous Coronary Intervention

    No full text
    Black patients suffer worse outcomes after percutaneous coronary intervention (PCI) than White patients. Inequities in antiplatelet prescribing may contribute to this health disparity. We compared P2Y12 inhibitor prescribing by race following CYP2C19 genotyping to guide antiplatelet therapy selection after PCI. Patients from 9 sites that performed clinical CYP2C19 genotyping after PCI were included. Alternative therapy (e.g., prasugrel or ticagrelor) was recommended for CYP2C19 no-function allele carriers, in whom clopidogrel is predicted to be less effective. The primary outcome was choice of P2Y12 inhibitor (clopidogrel vs. alternative therapy) based on genotype. Of 3,342 patients included, 2,448 (73%) were White, and 659 (20%) were Black. More Black than White patients had a no-function allele (34.3% vs. 29.7%, P = 0.024). At hospital discharge following PCI, 44.2% of Black and 44.0% of White no-function allele carriers were prescribed alternative therapy. At the time of the last follow-up within 12 months, numerically fewer Black (51.8%) than White (56.7%) no-function allele carriers were prescribed alternative therapy (P = 0.190). However, the difference was not significant after accounting for other factors associated with P2Y12 inhibitor selection (odds ratio 0.79, 95% confidence interval 0.58-1.08). Alternative therapy use did not differ between Black (14.3%) and White (16.7%) patients without a no-function allele (P = 0.232). Among real-world patients who received CYP2C19 testing after PCI, P2Y12 inhibitor prescribing rates did not differ between Black and White patients. Our data suggest an absence of racial disparity in genotype-guided antiplatelet prescribing among patients receiving CYP2C19 testing

    Multisite investigation of strategies for the clinical implementation of pre-emptive pharmacogenetic testing

    Get PDF
    Purpose: The increased availability of clinical pharmacogenetic (PGx) guidelines and decreasing costs for genetic testing have slowly led to increased utilization of PGx testing in clinical practice. Pre-emptive PGx testing, where testing is performed in advance of drug prescribing, is one means to ensure results are available at the time of prescribing decisions. However, the most efficient and effective methods to clinically implement this strategy remain unclear. Methods: In this report, we compare and contrast implementation strategies for pre-emptive PGx testing by 15 early-adopter institutions. We surveyed these groups, collecting data on testing approaches, team composition, and workflow dynamics, in addition to estimated third-party reimbursement rates. Results: We found that while pre-emptive PGx testing models varied across sites, institutions shared several commonalities, including methods to identify patients eligible for testing, involvement of a precision medicine clinical team in program leadership, and the implementation of pharmacogenes with Clinical Pharmacogenetics Implementation Consortium guidelines available. Finally, while reimbursement rate data were difficult to obtain, the data available suggested that reimbursement rates for pre-emptive PGx testing remain low. Conclusion: These findings should inform the establishment of future implementation efforts at institutions considering a pre-emptive PGx testing program

    Implementing a pragmatic clinical trial to tailor opioids for chronic pain on behalf of the IGNITE ADOPT PGx investigators

    No full text
    Chronic pain is a prevalent condition with enormous economic burden. Opioids such as tramadol, codeine, and hydrocodone are commonly used to treat chronic pain; these drugs are activated to more potent opioid receptor agonists by the hepatic CYP2D6 enzyme. Results from clinical studies and mechanistic understandings suggest that CYP2D6-guided therapy will improve pain control and reduce adverse drug events. However, CYP2D6 is rarely used in clinical practice due in part to the demand for additional clinical trial evidence. Thus, we designed the ADOPT-PGx (A Depression and Opioid Pragmatic Trial in Pharmacogenetics) chronic pain study, a multicenter, pragmatic, randomized controlled clinical trial, to assess the effect of CYP2D6 testing on pain management. The study enrolled 1048 participants who are taking or being considered for treatment with CYP2D6-impacted opioids for their chronic pain. Participants were randomized to receive immediate or delayed (by 6 months) genotyping of CYP2D6 with clinical decision support (CDS). CDS encouraged the providers to follow the CYP2D6-guided trial recommendations. The primary study outcome is the 3-month absolute change in the composite pain intensity score assessed using Patient-Reported Outcomes Measurement Information System (PROMIS) measures. Follow-up will be completed in July 2024. Herein, we describe the design of this trial along with challenges encountered during enrollment

    Rationale and design for a pragmatic randomized trial to assess gene-based prescribing for SSRIs in the treatment of depression

    No full text
    Specific selective serotonin reuptake inhibitors (SSRIs) metabolism is strongly influenced by two pharmacogenes, CYP2D6 and CYP2C19. However, the effectiveness of prospectively using pharmacogenetic variants to select or dose SSRIs for depression is uncertain in routine clinical practice. The objective of this prospective, multicenter, pragmatic randomized controlled trial is to determine the effectiveness of genotype-guided selection and dosing of antidepressants on control of depression in participants who are 8 years or older with ≥3 months of depressive symptoms who require new or revised therapy. Those randomized to the intervention arm undergo pharmacogenetic testing at baseline and receive a pharmacy consult and/or automated clinical decision support intervention based on an actionable phenotype, while those randomized to the control arm have pharmacogenetic testing at the end of 6-months. In both groups, depression and drug tolerability outcomes are assessed at baseline, 1 month, 3 months (primary), and 6 months. The primary end point is defined by change in Patient-Reported Outcomes Measurement Information System (PROMIS) Depression score assessed at 3 months versus baseline. Secondary end points include change inpatient health questionnaire (PHQ-8) measure of depression severity, remission rates defined by PROMIS score < 16, medication adherence, and medication side effects. The primary analysis will compare the PROMIS score difference between trial arms among those with an actionable CYP2D6 or CYP2C19 genetic result or a CYP2D6 drug-drug interaction. The trial has completed accrual of 1461 participants, of which 562 were found to have an actionable phenotype to date, and follow-up will be complete in April of 2024

    Rationale and design for a pragmatic randomized trial to assess gene‐based prescribing for SSRIs in the treatment of depression

    No full text
    Abstract Specific selective serotonin reuptake inhibitors (SSRIs) metabolism is strongly influenced by two pharmacogenes, CYP2D6 and CYP2C19. However, the effectiveness of prospectively using pharmacogenetic variants to select or dose SSRIs for depression is uncertain in routine clinical practice. The objective of this prospective, multicenter, pragmatic randomized controlled trial is to determine the effectiveness of genotype‐guided selection and dosing of antidepressants on control of depression in participants who are 8 years or older with ≥3 months of depressive symptoms who require new or revised therapy. Those randomized to the intervention arm undergo pharmacogenetic testing at baseline and receive a pharmacy consult and/or automated clinical decision support intervention based on an actionable phenotype, while those randomized to the control arm have pharmacogenetic testing at the end of 6‐months. In both groups, depression and drug tolerability outcomes are assessed at baseline, 1 month, 3 months (primary), and 6 months. The primary end point is defined by change in Patient‐Reported Outcomes Measurement Information System (PROMIS) Depression score assessed at 3 months versus baseline. Secondary end points include change inpatient health questionnaire (PHQ‐8) measure of depression severity, remission rates defined by PROMIS score < 16, medication adherence, and medication side effects. The primary analysis will compare the PROMIS score difference between trial arms among those with an actionable CYP2D6 or CYP2C19 genetic result or a CYP2D6 drug–drug interaction. The trial has completed accrual of 1461 participants, of which 562 were found to have an actionable phenotype to date, and follow‐up will be complete in April of 2024
    corecore