7 research outputs found

    Your Privilege Gives Your Privacy Away: An Analysis of a Home Security Camera Service

    Get PDF
    Once considered a luxury, Home Security Cameras (HSCs) are now commonplace and constitute a growing part of the wider online video ecosystem. This paper argues that their expanding coverage and close integration with daily life may result in not only unique behavioral patterns, but also key privacy concerns. This motivates us to perform a detailed measurement study of a major HSC provider, covering 15.4M streams and 211K users. Our study takes two perspectives: (i) we explore the per-user behaviour, identifying core clusters of users; and (ii) we build on this analysis to extract and predict privacy-compromising insight. Key observations include a highly asymmetrical traffic distribution, distinct usage patterns, wasted resources and fixed viewing locations. Furthermore, we identify three privacy risks and explore them in detail. We find that paid users are more likely to be exposed to attacks due to their heavier usage patterns. We conclude by proposing simple mitigations that can alleviate these risk

    DeepTingle

    Get PDF
    DeepTingle is a text prediction and classification system trained on the collected works of the renowned fantastic gay erotica author Chuck Tingle. Whereas the writing assistance tools you use everyday (in the form of predictive text, translation, grammar checking and so on) are trained on generic, purportedly “neutral” datasets, DeepTingle is trained on a very specific, internally consistent but externally arguably eccentric dataset. This allows us to foreground and confront the norms embedded in data-driven creativity and productivity assistance tools. As such tools effectively function as extensions of our cognition into technology, it is important to identify the norms they embed within themselves and, by extension, us. DeepTingle is realized as a web application based on LSTM networks and the GloVe word embedding, implemented in JavaScript with Keras-JS.peer-reviewe

    Disruption-free topology reconfiguration in OSPF Networks

    No full text
    A few modifications to software and/or hardware of routers have been proposed recently to avoid the transient micro loops that can occur during the convergence of link-state interior gateway protocols like IS-IS and OSPF. We1 propose in this paper a technique that does not require modifications to ISIS and OSPF, and that can be applied now by ISPs. Roughly, in the case of a manual modification of the state of a link, we progressively change the metric associated with this link to reach the required modification by ensuring that each step of the progression will be loop-free. The number of changes that are applied to a link to reach the targeted state by ensuring the transient consistency of the forwarding inside the network is minimized. Analysis performed on real regional and tier-1 ISP topologies show that the number of required transient changes is small. The solution can be applied in the case of link metric updates, manual set up, and shut down of links

    When the Cure is Worse than the Disease: the Impact of Graceful IGP Operations on BGP

    No full text
    Network upgrade, performance optimization and traffic engineering activities often force network operators to adapt their IGP configuration. Recently, several techniques have been proposed to change an IGP configuration (e.g., link weights) in a disruption-free manner. Unfortunately, none of these tech- niques considers the impact of IGP changes on BGP correctness. In this paper, we show that known reconfiguration techniques can trigger various kinds of BGP anomalies. First, we illustrate the relevance of the problem by performing simulations on a Tier-1 network. Our simulations highlight that even a few link weight changes can produce long-lasting BGP anomalies affecting a significant part of the BGP routing table. Then, we study the problem of finding a reconfiguration ordering which maintains both IGP and BGP correctness. Unfortunately, we show examples in which such an ordering does not exist. Furthermore, we prove that deciding if such an ordering exists is NP-hard. Finally, we provide sufficient conditions and configuration guidelines that enable graceful operations for both IGP and BGP

    iBGP deceptions: more sessions, fewer routes

    No full text
    Internal BGP (iBGP) is used to distribute interdomain routes within a single ISP. The interaction between iBGP and the underlying IGP can lead to routing and forwarding anomalies. For this reason, several research contributions aimed at defining sufficient conditions to guarantee anomaly-free configurations and providing design guidelines for network operators. In this paper, we show several anomalies caused by defective dissemination of routes in iBGP. We define the dissemination correctness property, which models the ability of routers to learn at least one route to each destination. By distinguishing between dissemination correctness and existing correctness properties, we show counterexamples that invalidate some results in the literature. Further, we prove that deciding whether an iBGP configuration is dissemination correct is computationally intractable. Even worse, determining whether the addition of a single iBGP session can adversely affect dissemination correctness of an iBGP configuration is also computationally intractable. Finally, we provide sufficient conditions that ensure dissemination correctness, and we leverage them to both formulate design guidelines and revisit prior results

    A Distributed and Robust SDN Control Plane for Transactional Network Updates

    No full text
    Software-defined networking (SDN) is a novel paradigm that outsources the control of programmable network switches to a set of software controllers. The most fundamental task of these controllers is the correct implementation of the network policy, i.e., the intended network behavior. In essence, such a policy specifies the rules by which packets must be forwarded across the network. This paper studies a distributed SDN control plane that enables concurrent and robust policy implementation. We introduce a formal model describing the interaction between the data plane and a distributed control plane (consisting of a collection of fault-prone controllers). Then we formulate the problem of consistent composition of concurrent network policy updates (termed the CPC Problem). To anticipate scenarios in which some conflicting policy updates must be rejected, we enable the composition via a natural transactional interface with all-or-nothing semantics. We show that the ability of an f-resilient distributed control plane to process concurrent policy updates depends on the tag complexity, i.e., the number of policy labels (a.k.a. tags) available to the controllers, and describe a CPC protocol with optimal tag complexity f+2

    The quest for resilient (static) forwarding tables

    No full text
    Fast Reroute (FRR) and other forms of immediate failover have long been used to recover from certain classes of failures without invoking the network control plane. While the set of such techniques is growing, the level of resiliency to failures that this approach can provide is not adequately understood. We embark upon a systematic algorithmic study of the resiliency of immediate failover in a variety of models (with/without packet marking/duplication, etc.). We leverage our findings to devise new schemes for immediate failover and show, both theoretically and experimentally, that these outperform existing approaches. © 2016 IEEE
    corecore