57 research outputs found

    Endovascular treatment of an open cervical fracture with carotid artery tear

    Get PDF
    The dilemma of how to treat penetrating wound injuries to the neck, which involve a combination of a common carotid artery rupture and a cervical spinal fracture, is presented in this case report

    Antibodies to Serine Proteases in the Antiphospholipid Syndrome

    Get PDF
    It is generally accepted that the major autoantigen for antiphospholipid antibodies (aPL) in the antiphospholipid syndrome (APS) is Ξ²2-glycoprotein I (Ξ²2GPI). However, a recent study has revealed that some aPL bind to certain conformational epitope(s) on Ξ²2GPI shared by the homologous enzymatic domains of several serine proteases involved in hemostasis and fibrinolysis. Importantly, some serine protease–reactive aPL correspondingly hinder anticoagulant regulation and resolution of clots. These results extend several early findings of aPL binding to other coagulation factors and provide a new perspective about some aPL in terms of binding specificities and related functional properties in promoting thrombosis. Moreover, a recent immunological and pathological study of a panel of human IgG monoclonal aPL showed that aPL with strong binding to thrombin promote in vivo venous thrombosis and leukocyte adherence, suggesting that aPL reactivity with thrombin may be a good predictor for pathogenic potentials of aPL

    Understanding Behavioral Antitrust

    Full text link

    Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    Get PDF
    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering

    In vitro inhibition of monkeypox virus production and spread by Interferon-Ξ²

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Orthopoxvirus </it>genus contains numerous virus species that are capable of causing disease in humans, including variola virus (the etiological agent of smallpox), monkeypox virus, cowpox virus, and vaccinia virus (the prototypical member of the genus). Monkeypox is a zoonotic disease that is endemic in the Democratic Republic of the Congo and is characterized by systemic lesion development and prominent lymphadenopathy. Like variola virus, monkeypox virus is a high priority pathogen for therapeutic development due to its potential to cause serious disease with significant health impacts after zoonotic, accidental, or deliberate introduction into a naΓ―ve population.</p> <p>Results</p> <p>The purpose of this study was to investigate the prophylactic and therapeutic potential of interferon-Ξ² (IFN-Ξ²) for use against monkeypox virus. We found that treatment with human IFN-Ξ² results in a significant decrease in monkeypox virus production and spread <it>in vitro</it>. IFN-Ξ² substantially inhibited monkeypox virus when introduced 6-8 h post infection, revealing its potential for use as a therapeutic. IFN-Ξ² induced the expression of the antiviral protein MxA in infected cells, and constitutive expression of MxA was shown to inhibit monkeypox virus infection.</p> <p>Conclusions</p> <p>Our results demonstrate the successful inhibition of monkeypox virus using human IFN-Ξ² and suggest that IFN-Ξ² could potentially serve as a novel safe therapeutic for human monkeypox disease.</p

    An Observational Cohort Study of the Kynurenine to Tryptophan Ratio in Sepsis: Association with Impaired Immune and Microvascular Function

    Get PDF
    Both endothelial and immune dysfunction contribute to the high mortality rate in human sepsis, but the underlying mechanisms are unclear. In response to infection, interferon-Ξ³ activates indoleamine 2,3-dioxygenase (IDO) which metabolizes the essential amino acid tryptophan to the toxic metabolite kynurenine. IDO can be expressed in endothelial cells, hepatocytes and mononuclear leukocytes, all of which contribute to sepsis pathophysiology. Increased IDO activity (measured by the kynurenine to tryptophan [KT] ratio in plasma) causes T-cell apoptosis, vasodilation and nitric oxide synthase inhibition. We hypothesized that IDO activity in sepsis would be related to plasma interferon-Ξ³, interleukin-10, T cell lymphopenia and impairment of microvascular reactivity, a measure of endothelial nitric oxide bioavailability. In an observational cohort study of 80 sepsis patients (50 severe and 30 non-severe) and 40 hospital controls, we determined the relationship between IDO activity (plasma KT ratio) and selected plasma cytokines, sepsis severity, nitric oxide-dependent microvascular reactivity and lymphocyte subsets in sepsis. Plasma amino acids were measured by high performance liquid chromatography and microvascular reactivity by peripheral arterial tonometry. The plasma KT ratio was increased in sepsis (median 141 [IQR 64–235]) compared to controls (36 [28–52]); p<0.0001), and correlated with plasma interferon-Ξ³ and interleukin-10, and inversely with total lymphocyte count, CD8+ and CD4+ T-lymphocytes, systolic blood pressure and microvascular reactivity. In response to treatment of severe sepsis, the median KT ratio decreased from 162 [IQR 100–286] on day 0 to 89 [65–139] by day 7; pβ€Š=β€Š0.0006) and this decrease in KT ratio correlated with a decrease in the Sequential Organ Failure Assessment score (p<0.0001). IDO-mediated tryptophan catabolism is associated with dysregulated immune responses and impaired microvascular reactivity in sepsis and may link these two fundamental processes in sepsis pathophysiology

    Inmates' Rights: Lost in the Maze of Prison Bureaucracy?

    No full text
    • …
    corecore