14 research outputs found

    Are isomeric alkenes used in species recognition among neo-tropical stingless bees (Melipona spp)

    Get PDF
    The majority of our understanding of the role of cuticular hydrocarbons (CHC) in recognition is based largely on temperate ant species and honey bees. The stingless bees remain relatively poorly studied, despite being the largest group of eusocial bees, comprising more than 400 species in some 60 genera. The Meliponini and Apini diverged between 80-130 Myr B.P. so the evolutionary trajectories that shaped the chemical communication systems in ants, honeybees and stingless bees may be very different. Therefore, the main aim of this study was to study if a unique species CHC signal existed in Neotropical stingless bees, as shown for many temperate species, and if so what compounds are involved. This was achieved by collecting CHC data from 24 colonies belonging to six species of Melipona from North-eastern Brazil and comparing this new data with all previously published CHC studies on Melipona. We found that each of the eleven Melipona species studied so far each produced a unique species CHC signal based around their alkene isomer production. A remarkable number of alkene isomers, up to 25 in M. asilvai, indicated the diversification of alkene positional isomers among the stingless bees. The only other group to have really diversified in alkene isomer production are the primitively eusocial Bumblebees (Bombus spp), which are the sister group of the stingless bees. Furthermore, among the eleven Neotropical Melipona species we could detect no effect of the environment on the proportion of alkane production as has been suggested for some other species

    Evolution of cuticular hydrocarbons in the hymenoptera : a meta-analysis

    Get PDF
    Chemical communication is the oldest form of communication, spreading across all organisms of life. In insects, cuticular hydrocarbons (CHC) function as the chemical recognition cues for the recognition of mates, species and nest-mates in social insects. Although much is known about the function of individual hydrocarbons and their biosynthesis, a phylogenetic overview is lacking. Here we review the CHC profiles of 241 species of hymenoptera, one of the largest and important insect orders, including the Symphyta (sawflies), the polyphyletic Parasitica (parasitoid wasps) and the Aculeata (wasps, bees and ants). We investigated whether these five major taxonomic groups differed in the presence and absence of CHC classes and whether the sociality of a species (solitarily vs. social) had an effect on CHC profile complexity. We found that the main CHC classes (i.e., n-alkanes, alkenes and methylalkanes) were all present early in the evolutionary history of the hymenoptera, as evidenced by their presence in ancient Symphyta and primitive Parasitica wasps. Throughout all groups within the Hymenoptera the more complex a CHC the fewer species that produce it, which may reflect the Occam's razor principle that insects’ only biosynthesize the most simple compound that fulfil its needs. Surprisingly there was no difference in the complexity of CHC profiles between social and solitary species, with some of the most complex CHC profiles belonging to the Parasitica. This profile complexity has been maintained in the ants, but some specialisation in biosynthetic pathways has led to a simplification of profiles in the aculeate wasps and bees. The absence of CHC classes in some taxa or species may be due to gene silencing or down-regulation rather than gene loss, as evidenced by sister species having highly divergent CHC profiles, and cannot be predicted by their phylogenetic history. The presence of highly complex CHC profiles prior to the vast radiation of the social hymenoptera indicates a 'spring-loaded' system where the diverse CHC needed for the complex communication systems of social insects, were already present for natural selection to act upon rather than evolve independently. This would greatly aid the multiple evolution of sociality in the Aculeata

    Colony membership is reflected by variations in cuticular hydrocarbon profile in a Neotropical paper wasp, Polistes satan (Hymenoptera, Vespidae)

    No full text
    Nestmate recognition is one the most important features in social insect colonies. Although epicuticular lipids or cuticular hydrocarbons have both structural and defensive functions in insects, they also seem to be involved in several aspects of communication in wasps, bees and ants. We analyzed and described for the first time the cuticular hydrocarbons of a Neotropical paper wasp, Polistes satan, and found that variation in hydrocarbon profile was sufficiently strong to discriminate individuals according to their colony membership. Therefore, it seems that small differences in the proportion of these compounds can be detected and used as a chemical-based cue by nestmates to detect invaders and avoid usurpation.6239039
    corecore