388 research outputs found

    Analysis of soil and vegetation patterns in semi-arid Mediterranean landscapes by way of a conceptual water balance model

    No full text
    International audienceThis paper investigates the impact of various vegetation types on water balance variability in semi-arid Mediterranean landscapes, and the different strategies they may have developed to succeed in such water-limited environments. Water balance constraints are assumed to dominate the organization of landscapes and a conceptual bucket approach is adopted to model the temporal water balance dynamics, with vegetation water use efficiency being parameterized through the use of empirically obtained crop coefficients as surrogates of vegetation behavior in various developmental stages. Sensitivity analyses with respect to the root zone depth and soil water holding capacity are carried out with the aim of investigating the existence of preferential soil-vegetation associations and, hence, the spatial distribution of vegetation types within the study region. Based on these sensitivity analyses the degrees of suitability and adaptability of each vegetation type to parts of the study region are explored with respect of the soil water holding capacity, and the model results were found to be able to explain the observed affinity patterns. Finally, the existence of such preferential association between soil water holding capacity and vegetation species is verified through an extensive soil survey available in the study region

    Climatic control on the variability of flood distribution

    No full text
    International audienceThe variability of the second order moments of flood peaks with respect to geomorphoclimatic basin characteristics was investigated. In particular, the behaviour of the coefficient of variation (Cv) of the series of annual maximum floods was analysed with respect to its dependence on physically consistent quantities. The results achieved were in fairly good agreement with real world observed characteristics and interesting insights on the relationship between Cv and basin size were found. It appears that Cv is controlled mainly by the climate and by some water loss features. Many observations reported in the literature show a decrease of Cv with basin area A, usually ascribed to the limited spatial extent of extreme events, which leads to a decrease with area of the Cv of areal rainfall intensity. An increase of Cv with the area is also sometimes observed for small basins. Such different behaviours were accounted for by the concurrent effect on two parameters that affect the Cv (A) relationship, representative of the way rainfall losses and effective rainfall intensity scale with the basin area.</p

    Stochastic bias-correction of daily rainfall scenarios for hydrological applications

    Get PDF
    The accuracy of rainfall predictions provided by climate models is crucial for the assessment of climate change impacts on hydrological processes. In fact, the presence of bias in downscaled precipitation may produce large bias in the assessment of soil moisture dynamics, river flows and groundwater recharge. &lt;br&gt;&lt;br&gt; In this study, a comparison between statistical properties of rainfall observations and model control simulations from a Regional Climate Model (RCM) was performed through a robust and meaningful representation of the precipitation process. The output of the adopted RCM was analysed and re-scaled exploiting the structure of a stochastic model of the point rainfall process. In particular, the stochastic model is able to adequately reproduce the rainfall intermittency at the synoptic scale, which is one of the crucial aspects for the Mediterranean environments. Possible alteration in the local rainfall regime was investigated by means of the historical daily time-series from a dense rain-gauge network, which were also used for the analysis of the RCM bias in terms of dry and wet periods and storm intensity. The result is a stochastic scheme for bias-correction at the RCM-cell scale, which produces a realistic representation of the daily rainfall intermittency and precipitation depths, though a residual bias in the storm intensity of longer storm events persists

    Regional analysis of runoff thresholds behaviour in Southern Italy based on theoretically derived distributions

    Get PDF
    The analysis of runoff thresholds and, more in general, the identification of main mechanisms of runoff generation controlling the flood frequency distribution is investigated, by means of theoretically derived flood frequency distributions, in the framework of regional analysis. Two nested theoretically-derived distributions are fitted to annual maximum flood series recorded in several basins of Southern Italy. Results are exploited in order to investigate heterogeneities and homogeneities and to obtain useful information for improving the available methods for regional analysis of flood frequency

    Flood quantiles estimation based on theoretically derived distributions: regional analysis in Southern Italy

    Get PDF
    A regional probabilistic model for the estimation of medium-high return period flood quantiles is presented. The model is based on the use of theoretically derived probability distributions of annual maximum flood peaks (DDF). The general model is called TCIF (Two-Component IF model) and encompasses two different threshold mechanisms associated with ordinary and extraordinary events, respectively. Based on at-site calibration of this model for 33 gauged sites in Southern Italy, a regional analysis is performed obtaining satisfactory results for the estimation of flood quantiles for return periods of technical interest, thus suggesting the use of the proposed methodology for the application to ungauged basins. The model is validated by using a jack-knife cross-validation technique taking all river basins into consideration

    Effects of runoff thresholds on flood frequency distributions

    No full text
    International audienceRunoff generation during extreme floods usually occurs whenever rainfall forcing exceeds a given threshold. In many cases, different thresholds may be identified as responsible of the hydrological losses during ordinary events or extraordinary events at the basin scale. Such thresholds are shown to be related to the dynamics of soil saturation of the river basin and to account for the high skewness of their annual flood distributions. In basins where ordinary floods are mostly due to a small portion of the surface which is particularly prone to produce runoff, depending on permeability of a river basin and its antecedent soil moisture conditions, severe rainfall may exceed a basin-wide soil storage threshold and produce the so-called outlier events responsible of the high skewness of floods distributions. In this context, the derived theoretical model based on the concept of variable contributing area to peak flow proposed by Iacobellis and Fiorentino (2000) was generalized with the aim of incorporating such kind of dynamics in the description of the phenomena. The work produced a new formulation of the derived distribution where the two runoff components are explicitly considered. The present work was validated by using as test site a group of basins belonging to Southern Italy and characterized by flood distributions with high skewness. The application of the proposed model provided a good fitting to the observed distributions. Moreover, model parameters were found to be strongly related to physiographic basin characteristics giving consistency to the modelling assumptions

    Analysis on flood generation processes by means of a continuous simulation model

    Get PDF
    International audienceIn the present research, we exploited a continuous hydrological simulation to investigate on key variables responsible of flood peak formation. With this purpose, a distributed hydrological model (DREAM) is used in cascade with a rainfall generator (IRP-Iterated Random Pulse) to simulate a large number of extreme events providing insight into the main controls of flood generation mechanisms. Investigated variables are those used in theoretically derived probability distribution of floods based on the concept of partial contributing area (e.g. Iacobellis and Fiorentino, 2000). The continuous simulation model is used to investigate on the hydrological losses occurring during extreme events, the variability of the source area contributing to the flood peak and its lag-time. Results suggest interesting simplification for the theoretical probability distribution of floods according to the different climatic and geomorfologic environments. The study is applied to two basins located in Southern Italy with different climatic characteristics

    Best Fit and Selection of Theoretical Flood Frequency Distributions Based on Different Runoff Generation Mechanisms

    Get PDF
    Theoretically derived distributions allow the detection of dominant runoff generation mechanisms as key signatures of hydrologic similarity. We used two theoretically derived distributions of flood peak annual maxima: the first is the ―IF‖ distribution, which exploits the variable source area concept, coupled with a runoff threshold having scaling properties; the second is the Two Component-IF (TCIF) distribution, which generalizes the IF distribution, and is based on two different threshold mechanisms, associated with ordinary and extraordinary events, respectively. By focusing on the application of both models to two river basins, of sub-humid and semi-arid climate in Southern Italy, we present an ad hoc procedure for the estimation of parameters and we discuss the use of appropriate techniques for model selection, in the case of nested distributions

    Theoretical derivation of the index flood

    No full text
    International audienceThe expected value of the annual flood is always needed for attaining reliable estimates of the return period of floods. In particular, the accuracy of its estimate is crucial for ungauged basins, where regional analysis is to be invoked. The main goal of this research was to search for an index flood formula suitable to explicate the influence of basin characteristics such as geomorphology, vegetation, soil and climate. This formula, due to unavoidable overparameterization, more than being suggested for technical use, allows sensitivity analyses of simpler formulae to basin features. This study was mainly based on the theoretical distribution of floods developed by Iacobellis and Fiorentino (2000). In particular, the relationship that they derived for the first order moment was analyzed and simplified by assuming the Gumbel distribution as a first order approximation for the distributions of floods and rainfall intensities. The results were validated with regard to data recorded in some basins located in Southern Italy, in a climatically end geologically heterogeneous territory

    Runoff thresholds in derived flood frequency distributions

    Get PDF
    In general, different mechanisms may be identified as responsible of runoff generation during ordinary events or extraordinary events at the basin scale. In a simplified scheme these mechanisms may be represented by different runoff thresholds. In this context, the derived flood frequency model, based on the effect of partial contributing areas on peak flow, proposed by Iacobellis and Fiorentino (2000), was generalized by providing a new formulation of the derived distribution where two runoff components are explicitly considered. The model was tested on a group of basins in Southern Italy characterized by annual maximum flood distributions highly skewed. The application of the proposed model provided good results in terms of descriptive ability. Model parameters were also found to be well correlated with geomorphological basin descriptors. Two different threshold mechanisms, associated respectively to ordinary and extraordinary events, were identified. In fact, we found that ordinary floods are mostly due to rainfall events exceeding a threshold infiltration rate in a small source area, while the so-called outlier events, responsible of the high skewness of flood distributions, are triggered when severe rainfalls exceed a threshold storage in a large portion of the basin
    • …
    corecore