8 research outputs found

    Rural-Urban Differences in Maternal Responses to Childhood Fever in South East Nigeria

    Get PDF
    Childhood fevers due to malaria remain a major cause of morbidity and mortality among under-five children in Nigeria. The degree of vulnerability perceived by mothers will affect their perception of the severity and threat of their child's fever and the patterns of health care use. This study was undertaken to compare maternal responses to childhood fever in urban and rural areas of Enugu, south east Nigeria.Data was collected with pre-tested interviewer-administered questionnaires from 276 and 124 urban and rural households respectively. In each household, only one woman aged 15-49 years who had lived in each of the urban and rural communities for at least one year and had at least one child less than 5 years old was interviewed. Malaria was mentioned as the commonest cause of childhood fevers. Rural mothers were more likely to recognize danger signs and symptoms than urban mothers. Rural mothers use more of informal than formal health services, and there is more home management of the fever with urban than rural mothers. Chloroquine, ACT, SP and Paracetamol are the main drugs given at home for childhood fevers, but the rural mothers were more likely to use leftover drugs from previous treatment to treat the fevers than urban mothers. The urban respondents were also more likely to use a preventive measure. Urban mothers sought actions faster than rural mothers and the total cost of treatment was also higher in urban areas.Both urban and rural mothers are aware that malaria is the major cause of childhood fevers. Although rural mothers recognize childhood fever and danger signs better than urban mothers, the urban mothers' responses to fever seem to be better than that for rural mothers. These responses and differences may be important for geographical targeting by policy makers for malaria interventions

    Verbal instructions override the meaning of facial expressions

    Get PDF
    Psychological research has long acknowledged that facial expressions can implicitly trigger affective psychophysiological responses. However, whether verbal information can alter the meaning of facial emotions and corresponding response patterns has not been tested. This study examined emotional facial expressions as cues for instructed threat-of-shock or safety, with a focus on defensive responding. In addition, reversal instructions were introduced to test the impact of explicit safety instructions on fear extinction. Forty participants were instructed that they would receive unpleasant electric shocks, for instance, when viewing happy but not angry faces. In a second block, instructions were reversed (e.g., now angry faces cued shock). Happy, neutral, and angry faces were repeatedly presented, and auditory startle probes were delivered in half of the trials. The defensive startle reflex was potentiated for threat compared to safety cues. Importantly, this effect occurred regardless of whether threat was cued by happy or angry expressions. Although the typical pattern of response habituation was observed, defense activation to newly instructed threat cues remained significantly enhanced in the second part of the experiment, and it was more pronounced in more socially anxious participants. Thus, anxious individuals did not exhibit more pronounced defense activation compared to less anxious participants, but their defense activation was more persistent

    Malaria in Africa: Vector Species' Niche Models and Relative Risk Maps

    Get PDF
    A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The “additive” model assumes no interaction; the “minimax” model assumes maximum relative risk due to any vector in a cell; and the “competitive exclusion” model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease
    corecore