31 research outputs found

    Clinical study of the factors affecting radioulnar deviation of the wrist joint

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The radioulnar carpal joint is critical for hand and wrist function. Radioulnar deviation indicates distal radioulnar joint flexibility and reflects the structure and function of the carpal bones, ulna, radius and ligaments. The present study examined whether radioulnar deviation is affected by gender, manual labor, playing a musical instrument, playing sport, handedness, previous fracture or prior inflammation. The study used clinical findings based on anatomical landmarks</p> <p>Methods</p> <p>The ulnar, radial and total deviations for both left and right hands were measured in 300 subjects (157 men and 143 women) of mean age 21.7 years. Measurements were made with the forearm in a fixed pronated position using a novel specially designed goniometer. The gender of each subject was recorded, and information on playing of sport, playing a musical instrument, manual labor, handedness, and history of fracture or inflammation was sought. Data were analyzed using a multifactor ANOVA test.</p> <p>Results</p> <p>No statistically significant difference (p-value > 0.05) was found between those comparing groups except the total deviation of athletes' left hand versus the total deviation of non athletes' left hand (p-value 0.041 < 0.05) and the radial deviation of manual workers' left hand and non manual workers' left hand (p-value 0.002 < 0.05).</p> <p>Conclusions</p> <p>This study was based on clinical findings using anatomical landmarks. We found that manual workers and athletes showed greater left hand flexibility. This suggests that activities that place chronic stress on the radiocarpal joint can independently affect radioulnar deviation.</p

    Incidence and characteristics of distal radius fractures in a southern Swedish region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of distal radius fracture has increased substantially during the last 50 years according to several studies that estimated the overall incidence in various general populations. The incidence of fracture classified according to severity has not been well documented. The aim of this population-based study was to estimate the overall and type-specific incidence rates of distal radius fracture in a representative population in southern Sweden.</p> <p>Methods</p> <p>During 2001, all persons older than 18 years with acute distal radius fracture in the southern Swedish region of Northeastern Scania were prospectively recorded. A radiologist classified the fractures according to the AO system and measured volar tilt and ulnar variance. A fracture with volar tilt outside a range of -5° to 20° and/or ulnar variance of 2 mm or greater was defined as displaced.</p> <p>Results</p> <p>335 persons with acute distal radius fracture were recorded during the 1-year period. The overall incidence rate was 26 (95% confidence interval 23–29) per 10,000 person-years. Among women the incidence rate increased rapidly from the age of 50 and reached a peak of 119 per 10,000 person-years in women 80 years and older. The incidence rate among women 50 to 79 years old (56 per 10,000 person-years) was lower than that reported in previous studies of similar populations. Among men the incidence rate was low until the age of 80 years and older when it increased to 28 per 10,000 person-years. Fractures classified as AO type A comprised about 80% of the fractures in women and 64% in men. Almost two-thirds of all fractures were displaced and among men and women 80 years and older more than 80% of the fractures were displaced.</p> <p>Conclusion</p> <p>The incidence rate of distal radius fracture in women 50 to 79 years old was lower than previously reported, which may indicate declining incidence in this group. In both sexes, the incidence was highest in the age group of 80 years and older. With a growing number of elderly in the general population, the impact of distal radius fracture in the future may be considerable.</p

    Polygenic risk modeling for prediction of epithelial ovarian cancer risk

    Get PDF
    Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs

    Ovarian cancer stem cells: still an elusive entity?

    Full text link

    Quantified kinematics of the injury to the posterior cruciate ligament: a computer-aided design simulation study

    No full text
    Objective. To quantify the kinematics of the injury to the posterior cruciate and the other major knee ligaments as a function of the knee flexion angle at the moment of impact. Design. Computer-aided design modelling was used to investigate the strain response of all major knee ligaments during anteroposterior abnormal tibio-femoral translation at 0-90 degrees knee flexion. Background. It is generally believed that the likelihood of injury to the posterior cruciate ligament following anterior impact is higher in the flexed knee. However, there are no kinematical studies to quantify this clinical observation or investigate the role of the other knee ligaments in the above situation. Methods. Computer calculations of the individual ligament strain were plotted against the magnitude of posterior tibial translation. Additionally, the strain rate for each ligament (defined as the ligament strain produced per mm of posterior tibial linear translation) was calculated as the slope of the strain-displacement curve for all tested degrees of knee flexion. Results. The posterior cruciate ligament has been shown to be the primary restraint to posterior tibial translation in all degrees of knee flexion. However, at 90 degrees of knee flexion the strain rate of the posterior cruciate ligament is approximately half that in the fully extended knee and the posterior cruciate ligament is the only ligament to resist posterior tibial translation. Conclusions. The strain behaviour of the posterior cruciate ligament during injury is highly dependent on the knee flexion during the moment of impact. Forced posterior tibial translation in the 90 degrees flexed knee may result in isolated posterior cruciate ligament deficit rather than a complex ligament disruption. The strain rate of a ligament as introduced in the present study is a quantified parameter related to the resistance that the ligament imposes to an abnormal joint movement. Relevance This study provides insight into the differential strain of the knee ligaments during impacts that result in posterior cruciate ligament injury. Studies that quantify the strain behaviour of individual knee ligaments are important to the understanding, diagnosis and prevention of injuries sustained during contact sports and high-energy road traffic accidents. (C) 2001 Elsevier Science Ltd. All rights reserved

    Secondary patellar resurfacing in total knee arthroplasty - Results of multivariate analysis in two case-matched groups

    No full text
    Although patellofemoral symptoms after patellar-retaining knee arthroplasty are common, no evidence has been published in the literature on the potential benefit from patellar resurfacing at a later stage. This study evaluates the effect of secondary (delayed) patellar resurfacing using comparisons between 2 case-matched groups of patients with primary and secondary patellar resurfacing. Furthermore, multivariate statistical methods were applied to study factors that may influence the final outcome. our results suggest that although significant clinical improvement was seen after delayed patella resurfacing, the outcome of secondary patellar resurfacing is inferior to that expected for a similar group of patients with primary resurfacing. Furthermore, the timing (delay period) of the secondary resurfacing procedure appears to negatively affect the final outcome. This suggests that secondary patellar resurfacing, when indicated, should be considered at an early stage
    corecore