17 research outputs found

    On the stability of scalar-vacuum space-times

    Full text link
    We study the stability of static, spherically symmetric solutions to the Einstein equations with a scalar field as the source. We describe a general methodology of studying small radial perturbations of scalar-vacuum configurations with arbitrary potentials V(\phi), and in particular space-times with throats (including wormholes), which are possible if the scalar is phantom. At such a throat, the effective potential for perturbations V_eff has a positive pole (a potential wall) that prevents a complete perturbation analysis. We show that, generically, (i) V_eff has precisely the form required for regularization by the known S-deformation method, and (ii) a solution with the regularized potential leads to regular scalar field and metric perturbations of the initial configuration. The well-known conformal mappings make these results also applicable to scalar-tensor and f(R) theories of gravity. As a particular example, we prove the instability of all static solutions with both normal and phantom scalars and V(\phi) = 0 under spherical perturbations. We thus confirm the previous results on the unstable nature of anti-Fisher wormholes and Fisher's singular solution and prove the instability of other branches of these solutions including the anti-Fisher "cold black holes".Comment: 18 pages, 5 figures. A few comments and references added. Final version accepted at EPJ

    Statistical theory of liquid

    No full text

    Statistics theory of liquids

    No full text

    Statistics theory of liquids

    No full text
    corecore