6 research outputs found

    New Optimization Methods for Converging Perturbative Series with a Field Cutoff

    Full text link
    We take advantage of the fact that in lambda phi ^4 problems a large field cutoff phi_max makes perturbative series converge toward values exponentially close to the exact values, to make optimal choices of phi_max. For perturbative series terminated at even order, it is in principle possible to adjust phi_max in order to obtain the exact result. For perturbative series terminated at odd order, the error can only be minimized. It is however possible to introduce a mass shift in order to obtain the exact result. We discuss weak and strong coupling methods to determine the unknown parameters. The numerical calculations in this article have been performed with a simple integral with one variable. We give arguments indicating that the qualitative features observed should extend to quantum mechanics and quantum field theory. We found that optimization at even order is more efficient that at odd order. We compare our methods with the linear delta-expansion (LDE) (combined with the principle of minimal sensitivity) which provides an upper envelope of for the accuracy curves of various Pade and Pade-Borel approximants. Our optimization method performs better than the LDE at strong and intermediate coupling, but not at weak coupling where it appears less robust and subject to further improvements. We also show that it is possible to fix the arbitrary parameter appearing in the LDE using the strong coupling expansion, in order to get accuracies comparable to ours.Comment: 10 pages, 16 figures, uses revtex; minor typos corrected, refs. adde

    Quantum field dynamics of the slow rollover in the linear delta expansion

    Get PDF
    We show how the linear delta expansion, as applied to the slow-roll transition in quantum mechanics, can be recast in the closed time-path formalism. This results in simpler, explicit expressions than were obtained in the Schr\"odinger formulation and allows for a straightforward generalization to higher dimensions. Motivated by the success of the method in the quantum-mechanical problem, where it has been shown to give more accurate results for longer than existing alternatives, we apply the linear delta expansion to four-dimensional field theory. At small times all methods agree. At later times, the first-order linear delta expansion is consistently higher that Hartree-Fock, but does not show any sign of a turnover. A turnover emerges in second-order of the method, but the value of attheturnoverislargerthatthatgivenbytheHartreeFockapproximation.Basedonthiscalculation,andourexperienceinthecorrespondingquantummechanicalproblem,webelievethattheHartreeFockapproximationdoesindeedunderestimatethevalueof at the turnover is larger that that given by the Hartree-Fock approximation. Based on this calculation, and our experience in the corresponding quantum-mechanical problem, we believe that the Hartree-Fock approximation does indeed underestimate the value of at the turnover. In subsequent applications of the method we hope to implement the calculation in the context of an expanding universe, following the line of earlier calculations by Boyanovsky {\sl et al.}, who used the Hartree-Fock and large-N methods. It seems clear, however, that the method will become unreliable as the system enters the reheating stage.Comment: 17 pages, 9 figures, revised version with extra section 4.2 including second order calculatio

    Higher Order Evaluation of the Critical Temperature for Interacting Homogeneous Dilute Bose Gases

    Get PDF
    We use the nonperturbative linear \delta expansion method to evaluate analytically the coefficients c_1 and c_2^{\prime \prime} which appear in the expansion for the transition temperature for a dilute, homogeneous, three dimensional Bose gas given by T_c= T_0 \{1 + c_1 a n^{1/3} + [ c_2^{\prime} \ln(a n^{1/3}) +c_2^{\prime \prime} ] a^2 n^{2/3} + {\cal O} (a^3 n)\}, where T_0 is the result for an ideal gas, a is the s-wave scattering length and n is the number density. In a previous work the same method has been used to evaluate c_1 to order-\delta^2 with the result c_1= 3.06. Here, we push the calculation to the next two orders obtaining c_1=2.45 at order-\delta^3 and c_1=1.48 at order-\delta^4. Analysing the topology of the graphs involved we discuss how our results relate to other nonperturbative analytical methods such as the self-consistent resummation and the 1/N approximations. At the same orders we obtain c_2^{\prime\prime}=101.4, c_2^{\prime \prime}=98.2 and c_2^{\prime \prime}=82.9. Our analytical results seem to support the recent Monte Carlo estimates c_1=1.32 \pm 0.02 and c_2^{\prime \prime}= 75.7 \pm 0.4.Comment: 29 pages, 3 eps figures. Minor changes, one reference added. Version in press Physical Review A (2002

    Dependence of Variational Perturbation Expansions on Strong-Coupling Behavior. Inapplicability of delta-Expansion to Field Theory

    Get PDF
    We show that in applications of variational theory to quantum field theory it is essential to account for the correct Wegner exponent omega governing the approach to the strong-coupling, or scaling limit. Otherwise the procedure either does not converge at all or to the wrong limit. This invalidates all papers applying the so-called delta-expansion to quantum field theory.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/34

    Testing the Gaussian expansion method in exactly solvable matrix models

    Full text link
    The Gaussian expansion has been developed since early 80s as a powerful analytical method, which enables nonperturbative studies of various systems using `perturbative' calculations. Recently the method has been used to suggest that 4d space-time is generated dynamically in a matrix model formulation of superstring theory. Here we clarify the nature of the method by applying it to exactly solvable one-matrix models with various kinds of potential including the ones unbounded from below and of the double-well type. We also formulate a prescription to include a linear term in the Gaussian action in a way consistent with the loop expansion, and test it in some concrete examples. We discuss a case where we obtain two distinct plateaus in the parameter space of the Gaussian action, corresponding to different large-N solutions. This clarifies the situation encountered in the dynamical determination of the space-time dimensionality in the previous works.Comment: 30 pages, 15 figures, LaTeX; added references for section

    Asymptotically Improved Convergence of Optimized Perturbation Theory in the Bose-Einstein Condensation Problem

    Full text link
    We investigate the convergence properties of optimized perturbation theory, or linear δ\delta expansion (LDE), within the context of finite temperature phase transitions. Our results prove the reliability of these methods, recently employed in the determination of the critical temperature T_c for a system of weakly interacting homogeneous dilute Bose gas. We carry out the explicit LDE optimized calculations and also the infrared analysis of the relevant quantities involved in the determination of TcT_c in the large-N limit, when the relevant effective static action describing the system is extended to O(N) symmetry. Then, using an efficient resummation method, we show how the LDE can exactly reproduce the known large-N result for TcT_c already at the first non-trivial order. Next, we consider the finite N=2 case where, using similar resummation techniques, we improve the analytical results for the nonperturbative terms involved in the expression for the critical temperature allowing comparison with recent Monte Carlo estimates of them. To illustrate the method we have considered a simple geometric series showing how the procedure as a whole works consistently in a general case.Comment: 38 pages, 3 eps figures, Revtex4. Final version in press Phys. Rev.
    corecore