6 research outputs found
New Optimization Methods for Converging Perturbative Series with a Field Cutoff
We take advantage of the fact that in lambda phi ^4 problems a large field
cutoff phi_max makes perturbative series converge toward values exponentially
close to the exact values, to make optimal choices of phi_max. For perturbative
series terminated at even order, it is in principle possible to adjust phi_max
in order to obtain the exact result. For perturbative series terminated at odd
order, the error can only be minimized. It is however possible to introduce a
mass shift in order to obtain the exact result. We discuss weak and strong
coupling methods to determine the unknown parameters. The numerical
calculations in this article have been performed with a simple integral with
one variable. We give arguments indicating that the qualitative features
observed should extend to quantum mechanics and quantum field theory. We found
that optimization at even order is more efficient that at odd order. We compare
our methods with the linear delta-expansion (LDE) (combined with the principle
of minimal sensitivity) which provides an upper envelope of for the accuracy
curves of various Pade and Pade-Borel approximants. Our optimization method
performs better than the LDE at strong and intermediate coupling, but not at
weak coupling where it appears less robust and subject to further improvements.
We also show that it is possible to fix the arbitrary parameter appearing in
the LDE using the strong coupling expansion, in order to get accuracies
comparable to ours.Comment: 10 pages, 16 figures, uses revtex; minor typos corrected, refs. adde
Quantum field dynamics of the slow rollover in the linear delta expansion
We show how the linear delta expansion, as applied to the slow-roll
transition in quantum mechanics, can be recast in the closed time-path
formalism. This results in simpler, explicit expressions than were obtained in
the Schr\"odinger formulation and allows for a straightforward generalization
to higher dimensions. Motivated by the success of the method in the
quantum-mechanical problem, where it has been shown to give more accurate
results for longer than existing alternatives, we apply the linear delta
expansion to four-dimensional field theory.
At small times all methods agree. At later times, the first-order linear
delta expansion is consistently higher that Hartree-Fock, but does not show any
sign of a turnover. A turnover emerges in second-order of the method, but the
value of at the
turnover. In subsequent applications of the method we hope to implement the
calculation in the context of an expanding universe, following the line of
earlier calculations by Boyanovsky {\sl et al.}, who used the Hartree-Fock and
large-N methods. It seems clear, however, that the method will become
unreliable as the system enters the reheating stage.Comment: 17 pages, 9 figures, revised version with extra section 4.2 including
second order calculatio
Higher Order Evaluation of the Critical Temperature for Interacting Homogeneous Dilute Bose Gases
We use the nonperturbative linear \delta expansion method to evaluate
analytically the coefficients c_1 and c_2^{\prime \prime} which appear in the
expansion for the transition temperature for a dilute, homogeneous, three
dimensional Bose gas given by T_c= T_0 \{1 + c_1 a n^{1/3} + [ c_2^{\prime}
\ln(a n^{1/3}) +c_2^{\prime \prime} ] a^2 n^{2/3} + {\cal O} (a^3 n)\}, where
T_0 is the result for an ideal gas, a is the s-wave scattering length and n is
the number density. In a previous work the same method has been used to
evaluate c_1 to order-\delta^2 with the result c_1= 3.06. Here, we push the
calculation to the next two orders obtaining c_1=2.45 at order-\delta^3 and
c_1=1.48 at order-\delta^4. Analysing the topology of the graphs involved we
discuss how our results relate to other nonperturbative analytical methods such
as the self-consistent resummation and the 1/N approximations. At the same
orders we obtain c_2^{\prime\prime}=101.4, c_2^{\prime \prime}=98.2 and
c_2^{\prime \prime}=82.9. Our analytical results seem to support the recent
Monte Carlo estimates c_1=1.32 \pm 0.02 and c_2^{\prime \prime}= 75.7 \pm 0.4.Comment: 29 pages, 3 eps figures. Minor changes, one reference added. Version
in press Physical Review A (2002
Dependence of Variational Perturbation Expansions on Strong-Coupling Behavior. Inapplicability of delta-Expansion to Field Theory
We show that in applications of variational theory to quantum field theory it
is essential to account for the correct Wegner exponent omega governing the
approach to the strong-coupling, or scaling limit. Otherwise the procedure
either does not converge at all or to the wrong limit. This invalidates all
papers applying the so-called delta-expansion to quantum field theory.Comment: Author Information under
http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of
paper (including all PS fonts) at
http://www.physik.fu-berlin.de/~kleinert/34
Testing the Gaussian expansion method in exactly solvable matrix models
The Gaussian expansion has been developed since early 80s as a powerful
analytical method, which enables nonperturbative studies of various systems
using `perturbative' calculations. Recently the method has been used to suggest
that 4d space-time is generated dynamically in a matrix model formulation of
superstring theory. Here we clarify the nature of the method by applying it to
exactly solvable one-matrix models with various kinds of potential including
the ones unbounded from below and of the double-well type. We also formulate a
prescription to include a linear term in the Gaussian action in a way
consistent with the loop expansion, and test it in some concrete examples. We
discuss a case where we obtain two distinct plateaus in the parameter space of
the Gaussian action, corresponding to different large-N solutions. This
clarifies the situation encountered in the dynamical determination of the
space-time dimensionality in the previous works.Comment: 30 pages, 15 figures, LaTeX; added references for section
Asymptotically Improved Convergence of Optimized Perturbation Theory in the Bose-Einstein Condensation Problem
We investigate the convergence properties of optimized perturbation theory,
or linear expansion (LDE), within the context of finite temperature
phase transitions. Our results prove the reliability of these methods, recently
employed in the determination of the critical temperature T_c for a system of
weakly interacting homogeneous dilute Bose gas. We carry out the explicit LDE
optimized calculations and also the infrared analysis of the relevant
quantities involved in the determination of in the large-N limit, when
the relevant effective static action describing the system is extended to O(N)
symmetry. Then, using an efficient resummation method, we show how the LDE can
exactly reproduce the known large-N result for already at the first
non-trivial order. Next, we consider the finite N=2 case where, using similar
resummation techniques, we improve the analytical results for the
nonperturbative terms involved in the expression for the critical temperature
allowing comparison with recent Monte Carlo estimates of them. To illustrate
the method we have considered a simple geometric series showing how the
procedure as a whole works consistently in a general case.Comment: 38 pages, 3 eps figures, Revtex4. Final version in press Phys. Rev.
