8 research outputs found

    Electrical and light-emitting properties of silicon dioxide co-implanted by carbon and silicon ions

    No full text
    In this paper we explore the electrophysical and electroluminescence (EL) properties of thermally grown 350 nm thick SiO₂ layers co-implanted with Si⁺ and C⁺ ions. The implanting fluencies were chosen in such a way that the peak concentration of excess Si and C of 5-10 at.% were achieved. Effect of hydrogen plasma treatment on electroluminescent and durability of SiO₂ (Si,C) - Si-system is studied. Combined measurements of charge trapping and EL intensity as a function of the injected charge and current have been carried out with the aim of clarifying the mechanisms of electroluminescence. EL was demonstrated to have defect-related nature. Cross sections of both electron traps and hole traps were determined. EL quenching at a great levels of injected charge is associated with strong negative charge capture, following capture of positive charge leading to electrical breakdown of SiO₂ structures

    Modification of electroluminescence and charge trapping in germanium implanted metal-oxide-silicon light-emitting diodes with plasma treatment

    No full text
    We have studied the effect of plasma treatment on both the electroluminescent (EL) properties of Ge-implanted light-emitting metal-oxide silicon (MOS) devices and the charge trapping processes occurring therein. Under optimum conditions of plasma treatment, an appreciable increase in the device lifetime has been observed while maintaining the intensity of the light emission unchanged in the violet range of the spectrum. These phenomena are believed to be associated with recovery of the oxide network resulting from a relief of internal mechanical stresses and bond rearrangement that leads to a decrease in the generation efficiency of electron traps which are responsible for the device degradation

    Anisotropic flow fluctuations in Pb+Pb collisions at LHC

    No full text
    Fluctuations of anisotropic flow in lead-lead collisions at LHC energies arising in HYDJET++model are studied. It is shown that intrinsic fluctuations of the flow which appear mainly because of the fluctuations of particle multiplicity, momenta and coordinates are insufficient to match the measured experimental data, provided the eccentricity of the freeze-out hypersurface is fixed at any given impact parameter b. However, when the variations of the eccentricity in HYDJET++ are taken into account, the agreement between the model results and the data is drastically improved. Both model calculations and the data are filtered through the unfolding procedure. This procedure eliminates the non-flow fluctuations to a higher degree, thus indicating a dynamical origin of the flow fluctuations in HYDJET++ event generator

    Erratum: Electrical and light-emitting properties of silicon dioxide co-implanted by carbon and silicon ions

    No full text
    In this paper, we explore the electrophysical and electroluminescence (EL) properties of thermally grown 350 nm thick SiO₂ layers co-implanted with Si⁺ and C⁺ ions. The implanting fluencies were chosen in such a way that the peak concentration of excess Si and C of 5-10 at.% were achieved. Effect of hydrogen plasma treatment on electroluminescence and durability of SiO2 (Si,C) - Si-system is studied. Combined measurements of charge trapping and EL intensity as a function of the injected charge and current have been carried out with the aim of clarifying the mechanisms of electroluminescence. EL was demonstrated to have defect-related nature. Cross-sections of both electron traps and hole traps were determined. EL quenching at great levels of injected charge is associated with strong negative charge capture, following capture of positive charge leading to electrical breakdown of SiO₂ structures

    Hydro and Jets in Relativistic Heavy-Ion Collisions

    No full text
    We apply HYDJET++ model, which contains the treatment of both soft and hard processes, to study the heavy-ion collisions at LHC energies. The interplay of parametrised hydrodynamics and jets describes many features of the development of particle anisotropic flow including the break-up of mass hierarchy of elliptic and triangular flow, the falloff of the flow at certain transverse momentum and violation of the number-ofconstituent- quark (NCQ) scaling at LHC energies compared to the lower ones. Other signals, such as long-range dihadron correlations (ridge) and event-by-event (EbyE) fluctuations of the flow are also discussed. Model calculations demonstrate a good agreement with the available experimental data

    Hydro and Jets in Relativistic Heavy-Ion Collisions

    No full text
    International audienceWe apply HYDJET++ model, which contains the treatment of both soft and hard processes, to study the heavy-ion collisions at LHC energies. The interplay of parametrised hydrodynamics and jets describes many features of the development of particle anisotropic flow including the break-up of mass hierarchy of elliptic and triangular flow, the falloff of the flow at certain transverse momentum and violation of the number-ofconstituent- quark (NCQ) scaling at LHC energies compared to the lower ones. Other signals, such as long-range dihadron correlations (ridge) and event-by-event (EbyE) fluctuations of the flow are also discussed. Model calculations demonstrate a good agreement with the available experimental data

    Reaction chemistry of gossypol and its derivatives

    No full text
    corecore