19 research outputs found

    Calculations of liquid helium and neon VUV emission spectra, self-absorption and scattering for a neutrino detector

    Full text link
    To evaluate the feasibility of the recently proposed detection scheme of low energy neutrinos released from the Sun and supernovae called CLEAN, Cryogenic Low Energy Astrophysics with Noble Gases, which relies on the transparency of noble-gas cryogenic liquids to VUV radiation produced by neutrinos, we analyze theoretically VUV emission, self-absorption, and scattering of liquid helium and neon, primary candidates for CLEAN. Owing to strong repulsion of noble-gas atoms in the ground states at the equilibrium distance of the relevant excited state, the emission spectrum is substantially shifted from the absorption spectrum, and in principle the absorption is expected very small, allowing building large detectors. Our analysis, however, shows that the self-absorption and Rayleigh scattering are comparable to the size of the proposed detector. Our theoretical emission spectra are found in agreement with experimental observations although some deviation exists due to binary-interaction approximation, and our ab initio Rayleigh scattering lengths are found in agreement with other calculations based on the extrapolation of experimental refraction indices. The absorption process can result in either re-emission, which conserves the number of photons but delays their escape from the liquid, or in non-radiative quenching

    Mid-rapidity anti-proton to proton ratio from Au+Au collisions at sNN=130 \sqrt{s_{NN}} = 130 GeV

    Full text link
    We report results on the ratio of mid-rapidity anti-proton to proton yields in Au+Au collisions at \rts = 130 GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of y<0.5|y|<0.5 and 0.4 <pt<<p_t< 1.0 GeV/cc, the ratio is essentially independent of either transverse momentum or rapidity, with an average of 0.65±0.01(stat.)±0.07(syst.)0.65\pm 0.01_{\rm (stat.)} \pm 0.07_{\rm (syst.)} for minimum bias collisions. Within errors, no strong centrality dependence is observed. The results indicate that at this RHIC energy, although the pp-\pb pair production becomes important at mid-rapidity, a significant excess of baryons over anti-baryons is still present.Comment: 5 pages, 3 figures, accepted by Phys. Rev. Let

    Enzymes of mitochondrial #beta#-oxidation

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX180550 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore