19 research outputs found

    Search for the Chiral Magnetic Effect in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV with the STAR forward Event Plane Detectors

    Full text link
    A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity η<1.0|\eta|<1.0 and at forward rapidity 2.1<η<5.12.1 < |\eta|<5.1. We compare the results based on the directed flow plane (Ψ1\Psi_1) at forward rapidity and the elliptic flow plane (Ψ2\Psi_2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Ψ1\Psi_1 than to Ψ2\Psi_2, while a flow driven background scenario would lead to a consistent result for both event planes[1,2]. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur

    Search for the chiral magnetic wave using anisotropic flow of identified particles at energies available at the BNL Relativistic Heavy Ion Collider

    No full text
    The chiral magnetic wave (CMW) has been theorized to propagate in the deconfined nuclear medium formed in high-energy heavy-ion collisions and to cause a difference in elliptic flow (v2) between negatively and positively charged hadrons. Experimental data consistent with the CMW have been reported by the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC), based on the charge asymmetry dependence of the pion v2 from Au+Au collisions at sNN=27 to 200 GeV. In this comprehensive study, we present the STAR measurements of elliptic flow and triangular flow of charged pions, along with the v2 of charged kaons and protons, as a function of charge asymmetry in Au+Au collisions at sNN=27, 39, 62.4, and 200 GeV. The slope parameters extracted from the linear dependence of the v2 difference on charge asymmetry for different particle species are reported and compared in different centrality intervals. In addition, the slopes of v2 for charged pions in small systems, i.e., p+Au and d+Au at sNN=200 GeV, are also presented and compared with those in large systems, i.e., Au+Au at sNN=200 GeV and U+U at 193 GeV. Our results provide new insights for the possible existence of the CMW and further constrain the background contributions in heavy-ion collisions at RHIC energies.The chiral magnetic wave (CMW) has been theorized to propagate in the deconfined nuclear medium formed in high-energy heavy-ion collisions, and to cause a difference in elliptic flow (v2v_{2}) between negatively and positively charged hadrons. Experimental data consistent with the CMW have been reported by the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC), based on the charge asymmetry dependence of the pion v2v_{2} from Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 27 to 200 GeV. In this comprehensive study, we present the STAR measurements of elliptic flow and triangular flow of charged pions, along with the v2v_{2} of charged kaons and protons, as a function of charge asymmetry in Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 27, 39, 62.4 and 200 GeV. The slope parameters extracted from the linear dependence of the v2v_2 difference on charge asymmetry for different particle species are reported and compared in different centrality intervals. In addition, the slopes of v2v_{2} for charged pions in small systems, \textit{i.e.}, pp+Au and dd+Au at sNN\sqrt{s_{\rm NN}} = 200 GeV, are also presented and compared with those in large systems, \textit{i.e.}, Au+Au at sNN\sqrt{s_{\rm NN}} = 200 GeV and U+U at 193 GeV. Our results provide new insights for the possible existence of the CMW, and further constrain the background contributions in heavy-ion collisions at RHIC energies

    The proton-Omega correlation function in Au plus Au collisions at root s(NN)=200 GeV

    No full text
    We present the first measurement of the proton–Ω correlation function in heavy-ion collisions for the central (0–40%) and peripheral (40–80%) Au + Au collisions at sNN=200 GeV by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Predictions for the ratio of peripheral collisions to central collisions for the proton–Ω correlation function are sensitive to the presence of a nucleon–Ω bound state. These predictions are based on the proton–Ω interaction extracted from (2+1)-flavor lattice QCD calculations at the physical point. The measured ratio of the proton–Ω correlation function between the peripheral (small system) and central (large system) collisions is less than unity for relative momentum smaller than 40 MeV/c. Comparison of our measured correlation ratio with theoretical calculation slightly favors a proton–Ω bound system with a binding energy of ∼ 27 MeV. Keywords: Correlations, Femtoscopy, NΩ dibaryo

    Measurement of inclusive J/ψ suppression in Au+Au collisions at √sNN = 200 GeV through the dimuon channel at STAR

    No full text
    J/ψ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive J/ψ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at √sNN = 200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The J/ψ yields are measured in a wide transverse momentum (pT) range of 0.15 GeV/c to 12 GeV/c from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the J/ψ yield is suppressed by a factor of approximately 3 for pT > 5 GeV/c relative to that in p + p collisions scaled by the number of binary nucleon-nucleon collisions. The J/ψ nuclear modification factor displays little dependence on pT in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by J/ψ mesons in the QGP

    Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHIC

    No full text
    Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions – the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in p + Au and d + Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data

    Hyperon Polarization along the Beam Direction Relative to the Second and Third Harmonic Event Planes in Isobar Collisions at <math display="inline"><mrow><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>200</mn><mtext> </mtext><mtext> </mtext><mi>GeV</mi></mrow></math>

    No full text
    The polarization of Λ and Λ¯ hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sNN=200  GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pT dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagrees with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pT dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.The polarization of Λ\Lambda and Λˉ\bar{\Lambda} hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sNN\sqrt{s_{NN}} = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pTp_T dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pTp_T dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy

    Search for the chiral magnetic effect in Au+Au collisions at sNN=27 GeV with the STAR forward event plane detectors

    No full text
    A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity |η|<1.0 and at forward rapidity 2.1<|η|<5.1. We compare the results based on the directed flow plane (Ψ1) at forward rapidity and the elliptic flow plane (Ψ2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Ψ1 than to Ψ2, while a flow driven background scenario would lead to a consistent result for both event planes. In 10-50% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II

    Measurements of the Z0/γ⁎ cross section and transverse single spin asymmetry in 510 GeV p + p collisions

    No full text
    The differential cross section for Z0 production, measured as a function of the boson's transverse momentum (pT), provides important constraints on the evolution of the transverse momentum dependent parton distribution functions (TMDs). The transverse single spin asymmetry (TSSA) of the Z0 is sensitive to one of the polarized TMDs, the Sivers function, which is predicted to have the opposite sign in p+p →W/Z+X from that which enters in semi-inclusive deep inelastic scattering. In this Letter, the STAR Collaboration reports the first measurement of the Z0/γ⁎ differential cross section as a function of its pT in p+p collisions at a center-of-mass energy of 510 GeV, together with the Z0/γ⁎ total cross section. We also report the measurement of Z0/γ⁎ TSSA in transversely polarized p+p collisions at 510 GeV

    Results on total and elastic cross sections in proton–proton collisions at √s=200 GeV

    No full text
    We report results on the total and elastic cross sections in proton-proton collisions at √s = 200 GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range 0.045 ≤ −t ≤ 0.135 GeV2. The value of the exponential slope parameter B of the elastic differential cross section dσ/dt ∼ e−Bt in the measured −t range was found to be B = 14.32 ± 0.09(stat.)+0.13 −0.28(syst.) GeV−2. The total cross section σtot, obtained from extrapolation of the dσ/dt to the optical point at −t = 0, is σtot = 54.67 ± 0.21(stat.)+1.28 −1.38(syst.) mb. We also present the values of the elastic cross section σel = 10.85 ± 0.03(stat.)+0..49 −0.41(syst.) mb, the elastic cross section integrated within the STAR t-range σ det el = 4.05 ± 0.01(stat.)+0.18−0.17(syst.) mb, and the inelastic cross section σinel = 43.82 ± 0.21(stat.)+1.37−1.44(syst.) mb. The results are compared with the world dat
    corecore