22 research outputs found

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure

    First-order formalism for dark energy and dust

    Full text link
    This work deals with first-order formalism for dark energy and dust in standard cosmology, for models described by real scalar field in the presence of dust in spatially flat space. The field dynamics may be standard or tachyonic, and we show how the equations of motion can be solved by first-order differential equations. We investigate a model to illustrate how the dustlike matter may affect the cosmic evolution using this framework.Comment: 5 pages, 1 figure; title changed, new author included, discussions extended, references added, version to appear in EPJ

    Metal protection by anticorrosion papers in humid tropical climate

    No full text

    Effects of magnetic anisotropy and exchange in TmFe17

    No full text
    Neutron diffraction experiments have been carried out to study the magnetocrystalline anisotropy of two 2b and 2d Tm sublattices and four 4f, 6g, 12j, and 12k Fe sublattices in ferrimagnetic compound Tm2Fe17 space group P63 mmc . We have determined the temperature dependence of the magnitude and orientation of magnetization for each of the thulium and iron sublattices in the range 10 300 K. A spontaneous rotation at about 90 K of the Tm and Fe sublattice magnetizations from the c axis to the basal plane is accompanied by a drastic change in the magnetization magnitude, signifying a large magnetization anisotropy. Both Tm sublattices exhibit an easy axis type of the magnetocrystalline anisotropy. The Fe sublattices manifest both the uniaxial and planar anisotropy types. The sublattice formed by Fe atoms at the 4f position reveals the largest planar anisotropy constant. The Fe atoms at the 12j position show a uniaxial anisotropy. We find that the inelastic neutron scattering spectra measured below and above the spin reorientation transition are remarkably differen
    corecore