16 research outputs found

    Accurate calculation of polarization-related quantities in semiconductors

    Full text link
    We demonstrate that polarization-related quantities in semiconductors can be predicted accurately from first-principles calculations using the appropriate approach to the problem, the Berry-phase polarization theory. For III-V nitrides, our test case, we find polarizations, polarization differences between nitride pairs, and piezoelectric constants quite close to their previously established values. Refined data are nevertheless provided for all the relevant quantities.Comment: RevTeX 4 pages, no figure

    Multimorbidity and co-occurring musculoskeletal pain do not modify the effect of the selfBACK app on low back pain-related disability

    Get PDF
    Background: SELFBACK, an artificial intelligence (AI)-based app delivering evidence-based tailored self-management support to people with low back pain (LBP), has been shown to reduce LBP-related disability when added to usual care. LBP commonly co-occurs with multimorbidity (≥ 2 long-term conditions) or pain at other musculoskeletal sites, so this study explores if these factors modify the effect of the SELFBACK app or influence outcome trajectories over time. Methods: Secondary analysis of a randomized controlled trial with 9-month follow-up. Primary outcome is as follows: LBP-related disability (Roland Morris Disability Questionnaire, RMDQ). Secondary outcomes are as follows: stress/depression/illness perception/self-efficacy/general health/quality of life/physical activity/global perceived effect. We used linear mixed models for continuous outcomes and logistic generalized estimating equation for binary outcomes. Analyses were stratified to assess effect modification, whereas control (n = 229) and intervention (n = 232) groups were pooled in analyses of outcome trajectories. Results: Baseline multimorbidity and co-occurring musculoskeletal pain sites did not modify the effect of the SELFBACK app. The effect was somewhat stronger in people with multimorbidity than among those with LBP only (difference in RMDQ due to interaction, − 0.9[95 % CI − 2.5 to 0.6]). Participants with a greater number of long-term conditions and more co-occurring musculoskeletal pain had higher levels of baseline disability (RMDQ 11.3 for ≥ 2 long-term conditions vs 9.5 for LBP only; 11.3 for ≥ 4 musculoskeletal pain sites vs 10.2 for ≤ 1 additional musculoskeletal pain site); along with higher baseline scores for stress/depression/illness perception and poorer pain self-efficacy/general health ratings. In the pooled sample, LBP-related disability improved slightly less over time for people with ≥ 2 long-term conditions additional to LBP compared to no multimorbidity and for those with ≥4 co-occurring musculoskeletal pain sites compared to ≤ 1 additional musculoskeletal pain site (difference in mean change at 9 months = 1.5 and 2.2, respectively). All groups reported little improvement in secondary outcomes over time. Conclusions: Multimorbidity or co-occurring musculoskeletal pain does not modify the effect of the selfBACK app on LBP-related disability or other secondary outcomes. Although people with these health problems have worse scores both at baseline and 9 months, the AI-based selfBACK app appears to be helpful for those with multimorbidity or co-occurring musculoskeletal pain

    Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474

    Get PDF
    A recent phase 1 trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 led to the death of one volunteer and produced mild-to-severe neurological symptoms in four others. Although the cause of the clinical neurotoxicity is unknown, it has been postulated, given the clinical safety profile of other tested FAAH inhibitors, that off-target activities of BIA 10-2474 may have played a role. Here we use activity-based proteomicmethods to determine the protein interaction landscape of BIA 10-2474 in human cells and tissues. This analysis revealed that the drug inhibits several lipases that are not targeted by PF04457845, a highly selective and clinically tested FAAH inhibitor. BIA 10-2474, but not PF04457845, produced substantial alterations in lipid networks in human cortical neurons, suggesting that promiscuous lipase inhibitors have the potential to cause metabolic dysregulation in the nervous system

    Quasi-static switching currents in a vinylidene fluoride/trifluoroethylene copolymer

    No full text
    When a copolymer of vinylidene fluoride and trifluoroethylene is poled at high temperature, subsequent reversal of the polarization occurs at fields which are much greater than the normal coercive field. As the polarization is repeatedly reversed, the difference between positive and negative reversal fields is reduced. The results are consistent with models involving stabilisation of the dipole polarisation by injected space charge.4 page(s

    Piezoelectric Ceramic/Polymer Composites for High Frequency Applications

    No full text

    The synthesis of a combretastatin A-4 based library and discovery of new cooperative ortho-effects in Wittig reactions leading to (Z)-stilbenes

    No full text
    A synthesis of combretastatin A-4 and a small library of analogues led to the discovery of some new cooperative ortho-­effects allowing (Z)-stilbenes to be prepared in high yield and dia­stereomeric ratio.<br/

    Potassium carbonate-silica: a highly effective stationary phase for the chromatographic removal of organotin impurities

    No full text
    Organotin impurities in product mixtures can be reduced from stoichiometric levels to similar to 15 parts per million by column chromatography using 10% w/w anhydrous potassium carbonate-silica as a stationary phase

    GaN: piezoelectric constants

    No full text

    Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain

    No full text
    P-glycoprotein (P-gp) is one of the best-known mediators of drug efflux-based multidrug resistance in many cancers. This validated therapeutic target is a prototypic, plasma membrane resident ATPBinding Cassette transporter that pumps xenobiotic compounds out of cells. The large, polyspecific drug-binding pocket of P-gp recognizes a variety of structurally unrelated compounds. The transport of these drugs across the membrane is coincident with changes in the size and shape of this pocket during the course of the transport cycle. Here, we present the crystal structures of three inward-facing conformations of mouse P-gp derived from two different crystal forms. One structure has a nanobody bound to the C-terminal side of the first nucleotide-binding domain. This nanobody strongly inhibits the ATP hydrolysis activity of mouse Pgp by hindering the formation of a dimeric complex between the ATP-binding domains, which is essential for nucleotide hydrolysis. Together, these inward-facing conformational snapshots of P-gp demonstrate a range of flexibility exhibited by this transporter, which is likely an essential feature for the binding and transport of large, diverse substrates. The nanobody-bound structure also reveals a unique epitope on P-gp.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore