25 research outputs found

    Interaction corrections to the Hall coefficient at intermediate temperatures

    Full text link
    We investigate the effect of electron-electron interaction on the temperature dependence of the Hall coefficient of 2D electron gas at arbitrary relation between the temperature TT and the elastic mean-free time τ\tau. At small temperature TτT\tau \ll \hbar we reproduce the known relation between the logarithmic temperature dependences of the Hall coefficient and of the longitudinal conductivity. At higher temperatures, this relation is violated quite rapidly; correction to the Hall coefficient becomes 1/T\propto 1/T whereas the longitudinal conductivity becomes linear in temperature.Comment: 4 pages, 3 .eps figure

    Phase Relaxation of Electrons in Disordered Conductors

    Full text link
    Conduction electrons in disordered metals and heavily doped semiconductors at low temperatures preserve their phase coherence for a long time: phase relaxation time τϕ\tau_\phi can be orders of magnitude longer than the momentum relaxation time. The large difference in these time scales gives rise to well known effects of weak localization, such as anomalous magnetoresistance. Among other interesting characteristics, study of these effects provide quantitative information on the dephasing rate 1/τϕ1/\tau_\phi. This parameter is of fundamental interest: the relation between /τϕ\hbar/\tau_\phi and the temperature TT (a typical energy scale of an electron) determines how well a single electron state is defined. We will discuss the basic physical meaning of 1/τϕ1/\tau_\phi in different situations and its difference from the energy relaxation rate. At low temperatures, the phase relaxation rate is governed by collisions between electrons. We will review existing theories of dephasing by these collisions or (which is the same) by electric noise inside the sample. We also discuss recent experiments on the magnetoresistance of 1D systems: some of them show saturation of 1/τϕ1/\tau_\phi at low temperatures, the other do not. To resolve this contradiction we discuss dephasing by an external microwave field and by nonequilibrium electric noise.Comment: Order of figures and references corrected; one reference added; 15 pages, 2 figures, lecture given on 10th International Winterschool on New Developments in Solid State Physics, Mauterndorf, Salzburg, Austria; 23-27 Feb. 199

    Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states

    Full text link
    We consider low-temperature behavior of weakly interacting electrons in disordered conductors in the regime when all single-particle eigenstates are localized by the quenched disorder. We prove that in the absence of coupling of the electrons to any external bath dc electrical conductivity exactly vanishes as long as the temperatute TT does not exceed some finite value TcT_c. At the same time, it can be also proven that at high enough TT the conductivity is finite. These two statements imply that the system undergoes a finite temperature Metal-to-Insulator transition, which can be viewed as Anderson-like localization of many-body wave functions in the Fock space. Metallic and insulating states are not different from each other by any spatial or discrete symmetries. We formulate the effective Hamiltonian description of the system at low energies (of the order of the level spacing in the single-particle localization volume). In the metallic phase quantum Boltzmann equation is valid, allowing to find the kinetic coefficients. In the insulating phase, T<TcT<T_c, we use Feynmann diagram technique to determine the probability distribution function for quantum-mechanical transition rates. The probability of an escape rate from a given quantum state to be finite turns out to vanish in every order of the perturbation theory in electron-electron interaction. Thus, electron-electron interaction alone is unable to cause the relaxation and establish the thermal equilibrium. As soon as some weak coupling to a bath is turned on, conductivity becomes finite even in the insulating phase

    Inelastic Scattering Time for Conductance Fluctuations

    Full text link
    We revisit the problem of inelastic times governing the temperature behavior of the weak localization correction and mesoscopic fluctuations in one- and two-dimensional systems. It is shown that, for dephasing by the electron electron interaction, not only are those times identical but the scaling functions are also the same.Comment: 10 pages Revtex; 5 eps files include

    Low energy transition in spectral statistics of 2D interactingfermions

    Full text link
    We study the level spacing statistics P(s)P(s) and eigenstate properties of spinless fermions with Coulomb interaction on a two dimensional lattice at constant filling factor and various disorder strength. In the limit of large lattice size, P(s)P(s) undergoes a transition from the Poisson to the Wigner-Dyson distribution at a critical total energy independent of the number of fermions. This implies the emergence of quantum ergodicity induced by interaction and delocalization in the Hilbert space at zero temperature.Comment: revtex, 5 pages, 4 figures; new data for eigenfunctions are adde

    Ballistic electron motion in a random magnetic field

    Full text link
    Using a new scheme of the derivation of the non-linear σ\sigma-model we consider the electron motion in a random magnetic field (RMF) in two dimensions. The derivation is based on writing quasiclassical equations and representing their solutions in terms of a functional integral over supermatrices QQ with the constraint Q2=1Q^2=1. Contrary to the standard scheme, neither singling out slow modes nor saddle-point approximation are used. The σ\sigma-model obtained is applicable at the length scale down to the electron wavelength. We show that this model differs from the model with a random potential (RP).However, after averaging over fluctuations in the Lyapunov region the standard σ\sigma-model is obtained leading to the conventional localization behavior.Comment: 10 pages, no figures, to be submitted in PRB v2: Section IV is remove

    The Parallel Magnetoconductance of Interacting Electrons in a Two Dimensional Disordered System

    Full text link
    The transport properties of interacting electrons for which the spin degree of freedom is taken into account are numerically studied for small two dimensional diffusive clusters. On-site electron-electron interactions tend to delocalize the electrons, while long-range interactions enhance localization. On careful examination of the transport properties, we reach the conclusion that it does not show a two dimensional metal insulator transition driven by interactions. A parallel magnetic field leads to enhanced resistivity, which saturates once the electrons become fully spin polarized. The strength of the magnetic field for which the resistivity saturates decreases as electron density goes down. Thus, the numerical calculations capture some of the features seen in recent experimental measurements of parallel magnetoconductance.Comment: 10 pages, 6 figure

    Linear temperature dependence of conductivity in the "insulating" regime of dilute two-dimensional holes in GaAs

    Full text link
    The conductivity of extremely high mobility dilute two-dimensional holes in GaAs changes linearly with temperature in the insulating side of the metal-insulator transition. Hopping conduction, characterized by an exponentially decreasing conductivity with decreasing temperature, is not observed when the conductivity is smaller than e2/he^{2}/h. We suggest that strong interactions in a regime close to the Wigner crystallization must be playing a role in the unusual transport.Comment: 3 pages, 2 figure

    Dynamics of short time--scale energy relaxation of optical excitations due to electron--electron scattering in the presence of arbitrary disorder

    Full text link
    A non--equilibrium occupation distribution relaxes towards the Fermi--Dirac distribution due to electron--electron scattering even in finite Fermi systems. The dynamic evolution of this thermalization process assumed to result from an optical excitation is investigated numerically by solving a Boltzmann equation for the carrier populations using a one--dimensional disordered system. We focus on the short time--scale behavior. The logarithmically long time--scale associated with the glassy behavior of interacting electrons in disordered systems is not treated in our investigation. For weak disorder and short range interaction we recover the expected result that disorder enhances the relaxation rate as compared to the case without disorder. For sufficiently strong disorder, however, we find an opposite trend due to the reduction of scattering probabilities originating from the strong localization of the single--particle states. Long--range interaction in this regime produces a similar effect. The relaxation rate is found to scale with the interaction strength, however, the interplay between the implicit and the explicit character of the interaction produces an anomalous exponent.Comment: 4 pages, 3 EPS figure

    A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade

    Full text link
    We provide a framework for analyzing the problem of interacting electrons in a ballistic quantum dot with chaotic boundary conditions within an energy ETE_T (the Thouless energy) of the Fermi energy. Within this window we show that the interactions can be characterized by Landau Fermi liquid parameters. When gg, the dimensionless conductance of the dot, is large, we find that the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as gg\to\infty (as in a large-N theory). The infinite gg theory shows a transition to a strong-coupling phase characterized by the same order parameter as in the Pomeranchuk transition in clean systems (a spontaneous interaction-induced Fermi surface distortion), but smeared and pinned by disorder. At finite gg, the two phases and critical point evolve into three regimes in the um1/gu_m-1/g plane -- weak- and strong-coupling regimes separated by crossover lines from a quantum-critical regime controlled by the quantum critical point. In the strong-coupling and quantum-critical regions, the quasiparticle acquires a width of the same order as the level spacing Δ\Delta within a few Δ\Delta's of the Fermi energy due to coupling to collective excitations. In the strong coupling regime if mm is odd, the dot will (if isolated) cross over from the orthogonal to unitary ensemble for an exponentially small external flux, or will (if strongly coupled to leads) break time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we are treating charge-channel instabilities in spinful systems, leaving spin-channel instabilities for future work. No substantive results are change
    corecore