3 research outputs found

    Evolution of density perturbations in a realistic universe

    Full text link
    Prompted by the recent more precise determination of the basic cosmological parameters and growing evidence that the matter-energy content of the universe is now dominated by dark energy and dark matter we present the general solution of the equation that describes the evolution of density perturbations in the linear approximation. It turns out that as in the standard CDM model the density perturbations grow very slowly during the radiation dominated epoch and their amplitude increases by a factor of about 4000 in the matter and later dark energy dominated epoch of expansion of the universe.Comment: 19 pages, 4 figure

    Анизотропия фонового излучения во фрактальной космологической модели

    No full text
    We consider the anisotropy properties of a background radiation in the fractal cosmological model. The space of this model includes self-similar domains. The metric tensors of any two domains are connected by the discrete scaling transformation. Photons of the background radiation cross the domain and their energies change. Any observer receives these photons from different domains and detects spots with different brightness. The power spectrum of the brightness anisotropy of the background radiation in the fractal cosmological model is calculated. It is shown this spectrum is closed to the observed angular power spectrum of the SDSS-quasar distribution on the celestial sphere. Only qualitatively it conforms to the angular power spectrum of CMB (WMAP-7).Рассматривается анизотропия фонового излучения во фрактальной космологической модели. Пространство этой модели состоит из самоподобных областей. Метрические тензоры любых двух областей связаны дискретным масштабным преобразованием (скейлингом). Фотоны фонового излучения проходят через домены, и их энергии изменяются. Наблюдатель, принимающий эти фотоны от разных доменов, обнаружит пятна различной яркости. Вычислен угловой спектр мощности анизотропии яркости фонового излучения в рамках фрактальной модели. Показано, что этот спектр близок к наблюдаемому угловому спектру мощности распределения SDSS-квазаров по небесной сфере. Лишь качественно этот спектр согласуется с угловым спектром мощности реликтового излучения (WMAP-7)

    Фрактальные свойства Вселенной

    No full text
    The large-scale structure of the Universe is revealed to be characterized by a range of power-laws. The power-laws are evidences of fractality because they may be interpreted through a conception of the Universe as an assembly of self-similar space–time domains. We accept the hypothesis that the matter of the Universe is described by the scalar charged meson field possessing the rotary symmetry. On basis of the hypothesis, the fractal cosmological model with scale invariant Lagrange’s field equation and Einstein’s equation permitting physical explanation of these properties is constructed. The field energy densities (which are constant) and the space–time metrics of different domains differ in constant factors only. Therefore, the space–time domains are geometrically similar and evolve similarly. Fractal properties of initial cosmological density perturbations remain and lead to presence of the fractal properties of the Universe’s large-scale structure which formed from them. The nonsingular, compacted, pulsating and doubly-connected cosmological model as a partial solution for the homogeneous, isotropic and flat case is constructed. A background radiation power spectrum has been computed. The spectrum is shown to be close to the observable angular power spectrum of the SDSS-quasar distribution on the celestial sphere.Обнаружено, что крупномасштабная структура Вселенной характеризуется рядом степенных зависимостей. Эти степенные законы являются признаками фрактальности, потому что их можно объяснить, если представить Вселенную как совокупность самоподобных пространственно-временных областей. Выдвигается гипотеза, что материя Вселенной описывается скалярным заряженным мезонным полем с вращательной симметрией. На основе этой гипотезы построена фрактальная космологическая модель с масштабно инвариантными уравнениями Лагранжа и Эйнштейна, которая позволяет дать физическую трактовку фрактальных свойств крупномасштабной структуры. Плотности энергии (являющиеся постоянными) и метрические тензоры различных пространственно-временных областей отличаются лишь постоянным множителем. Следовательно, эти области геометрически подобны и эволюционируют одинаково. Фрактальные свойства начальных космологических флуктуаций плотности сохраняются и приводят к наличию фрактальных свойств у крупномасштабной структуры, которая из них образовалась. Построена несингулярная, компактная, пульсирующая и двусвязная космологическая модель как частное решение для однородного, изотропного и плоского случая. Выведен спектр мощности фонового излучения в данной модели. Этот спектр близок к наблюдаемому угловому спектру мощности распределения SDSS-квазаров на небесной сфере
    corecore