7 research outputs found

    Invariance of Charge of Laughlin Quasiparticles

    Full text link
    A Quantum Antidot electrometer has been used in the first direct observation of the fractionally quantized electric charge. In this paper we report experiments performed on the integer i = 1, 2 and fractional f = 1/3 quantum Hall plateaus extending over a filling factor range of at least 27%. We find the charge of the Laughlin quasiparticles to be invariantly e/3, with standard deviation of 1.2% and absolute accuracy of 4%, independent of filling, tunneling current, and temperature.Comment: 4 pages, 5 fig

    Tunneling images of a 2D electron system in a quantizing magnetic field

    Full text link
    We have applied a scanning probe method, Subsurface Charge Accumulation (SCA) imaging, to resolve the local structure of the interior of a semiconductor two-dimensional electron system (2DES) in a tunneling geometry. Near magnetic fields corresponding to integer Landau level filling, submicron scale spatial structure in the out-of-phase component of the tunneling signal becomes visible. In the images presented here, the structure repeats itself when the filling factor is changed from nu=6 to nu=7. Therefore, we believe the images reflect small modulations in the 2DES density caused by the disorder in the sample.Comment: 2 pages, 2 color figures, submitted to LT23 proceeding

    Edge Dynamics in Quantum Hall Bilayers II: Exact Results with Disorder and Parallel Fields

    Full text link
    We study edge dynamics in the presence of interlayer tunneling, parallel magnetic field, and various types of disorder for two infinite sequences of quantum Hall states in symmetric bilayers. These sequences begin with the 110 and 331 Halperin states and include their fractional descendants at lower filling factors; the former is easily realized experimentally while the latter is a candidate for the experimentally observed quantum Hall state at a total filling factor of 1/2 in bilayers. We discuss the experimentally interesting observables that involve just one chiral edge of the sample and the correlation functions needed for computing them. We present several methods for obtaining exact results in the presence of interactions and disorder which rely on the chiral character of the system. Of particular interest are our results on the 331 state which suggest that a time-resolved measurement at the edge can be used to discriminate between the 331 and Pfaffian scenarios for the observed quantum Hall state at filling factor 1/2 in realistic double-layer systems.Comment: revtex+epsf; two-up postscript at http://www.sns.ias.edu/~leonid/ntwoup.p

    Magnetic edge states of impenetrable stripe

    Full text link
    The electron motion in a strong perpendicular magnetic field close to the impenetrable stripe is considered by making use of the singular integral equation technique. The energy spectrum is calculated and compared with the energy spectrum of the round antidot.Comment: REVTeX4 format, 9 pages with 9 figures (*.eps

    Large 256-pixel X-ray transition-edge sensor arrays with Mo/TiW/Cu trilayers

    No full text

    Microwave nanobolometer based on proximity Josephson junctions

    No full text
    We introduce a microwave bolometer aimed at high-quantum-efficiency detection of wave packet energy within the framework of circuit quantum electrodynamics, the ultimate goal being single microwave photon detection. We measure the differential thermal conductance between the detector and its heat bath, obtaining values as low as 5fW/K at 50mK. This is one tenth of the thermal conductance quantum and corresponds to a theoretical lower bound on noise-equivalent power of order 10−20W/√Hz at 50mK. By measuring the differential thermal conductance of the same bolometer design in substantially different environments and materials, we determine that electron-photon coupling dominates the thermalization of our nanobolometer.Peer reviewe
    corecore