128 research outputs found

    Magnetooptical effects in quantum wells irradiated with light pulses

    Full text link
    The method of detection and investigation of the magnetopolaron effect in the semiconductor quantum wells (QW) in a strong magnetic field, based on pulse light irradiation and measuring the reflected and transmitted pulses, has been proposed. It has been shown that a beating amplitude on the frequencies, corresponding to the magnetopolaron energy level splitting, depends strongly from the exciting pulse width. The existence of the time points of the total reflection and total transparency has been predicted. The high orders of the perturbation theory on electron-electromagnetic field interaction have been taken into account.Comment: 5 pages, 5 figures with captions, corrected typos, figures are reedeted to improve their quality in accordance with the Referee requirement; Phys. Rev. B, Brief Reports, submitted for publicatio

    Bipolarons in the Extended Holstein Hubbard Model

    Full text link
    We numerically and analytically calculate the properties of the bipolaron in an extended Hubbard Holstein model, which has a longer range electron-phonon coupling like the Fr\" ohlich model. In the strong coupling regime, the effective mass of the bipolaron in the extended model is much smaller than the Holstein bipolaron mass. In contrast to the Holstein bipolaron, the bipolaron in the extended model has a lower binding energy and remains bound with substantial binding energy even in the large-U limit. In comparison with the Holstein model where only a singlet bipolaron is bound, in the extended Holstein model a triplet bipolaron can also form a bound state. We discuss the possibility of phase separation in the case of finite electron doping.Comment: 5 pages, 3 figure

    The Holstein Polaron

    Full text link
    We describe a variational method to solve the Holstein model for an electron coupled to dynamical, quantum phonons on an infinite lattice. The variational space can be systematically expanded to achieve high accuracy with modest computational resources (12-digit accuracy for the 1d polaron energy at intermediate coupling). We compute ground and low-lying excited state properties of the model at continuous values of the wavevector kk in essentially all parameter regimes. Our results for the polaron energy band, effective mass and correlation functions compare favorably with those of other numerical techniques including DMRG, Global Local and exact diagonalization. We find a phase transition for the first excited state between a bound and unbound system of a polaron and an additional phonon excitation. The phase transition is also treated in strong coupling perturbation theory.Comment: 24 pages, 11 figures submitted to PR

    Spin-polaron model: transport properties of EuB6_6

    Full text link
    To understand anomalous transport properties of EuB6_6, we have studied the spin-polaron Hamiltonian incorporating the electron-phonon interaction. Assuming a strong exchange interaction between the carriers and the localized spins, the electrical conductivity is calculated. The temperature and magnetic field dependence of the resistivity of EuB6_6 are well explained. At low temperature, magnons dominate the conduction process, whereas the lattice contribution becomes significant at very high temperature due to the scattering with the phonons. Large negative magnetoresistance near the ferromagnetic transition is also reproduced as observed in EuB6_6.Comment: 4 pages, 3 figures, accepted in Phys. Rev.

    Semiclassical action based on dynamical mean-field theory describing electrons interacting with local lattice fluctuations

    Full text link
    We extend a recently introduced semiclassical approach to calculating the influence of local lattice fluctuations on electronic properties of metals and metallic molecular crystals. The effective action of electrons in degenerate orbital states coupling to Jahn-Teller distortions is derived, employing dynamical mean-field theory and adiabatic expansions. We improve on previous numerical treatments of the semiclassical action and present for the simplifying Holstein model results for the finite temperature optical conductivity at electron-phonon coupling strengths from weak to strong. Significant transfer of spectral weight from high to low frequencies is obtained on isotope substitution in the Fermi-liquid to polaron crossover regime.Comment: 10 pages, 7 figure

    Indications of coherence-incoherence crossover in layered transport

    Get PDF
    For many layered metals the temperature dependence of the interlayer resistance has a different behavior than the intralayer resistance. In order to better understand interlayer transport we consider a concrete model which exhibits this behavior. A small polaron model is used to illustrate how the interlayer transport is related to the coherence of quasi-particles within the layers. Explicit results are given for the electron spectral function, interlayer optical conductivity and the interlayer magnetoresistance. All these quantities have two contributions: one coherent (dominant at low temperatures) and one incoherent (dominant at high temperatures).Comment: 6 pages, 4 figures, REVTEX

    Holstein model in infinite dimensions at half-filling

    Full text link
    The normal state of the Holstein model is studied at half-filling in infinite dimensions and in the adiabatic regime. The dynamical mean-field equations are solved using perturbation expansions around the extremal paths of the effective action for the atoms. We find that the Migdal-Eliashberg expansion breaks down in the metallic state if the electron-phonon coupling Ī»\lambda exceeds a value of about 1.3 in spite of the fact that the formal expansion parameter Ī»Ļ‰0/EF\lambda \omega_0/E_F (Ļ‰0\omega_0 is the phonon frequency, EFE_F the Fermi energy) is much smaller than 1. The breakdown is due to the appearance of more than one extremal path of the action. We present numerical results which illustrate in detail the evolution of the local Green's function, the self-energy and the effective atomic potential as a function of Ī»\lambda.Comment: Revtex + 17 postscript figures include

    Critical fluctuation conductivity in layered superconductors in strong electric field

    Full text link
    The paraconductivity, originating from critical superconducting order-parameter fluctuations in the vicinity of the critical temperature in a layered superconductor is calculated in the frame of the self-consistent Hartree approximation, for an arbitrarily strong electric field and zero magnetic field. The paraconductivity diverges less steep towards the critical temperature in the Hartree approximation than in the Gaussian one and it shows a distinctly enhanced variation with the electric field. Our results indicate that high electric fields can be effectively used to suppress order-parameter fluctuations in high-temperature superconductors.Comment: 11 pages, 2 figures, to be published in Phys. Rev.

    Electron self-trapping in intermediate-valent SmB6

    Full text link
    SmB6 exhibits intermediate valence in the ground state and unusual behaviour at low temperatures. The resistivity and the Hall effect cannot be explained either by conventional sf-hybridization or by hopping transport in an impurity band. At least three different energy scales determine three temperature regimes of electron transport in this system. We consider the ground state properties, the soft valence fluctuations and the spectrum of band carriers in n-doped SmB6. The behaviour of excess conduction electrons in the presence of soft valence fluctuations and the origin of the three energy scales in the spectrum of elementary excitations is discussed. The carriers which determine the low-temperature transport in this system are self-trapped electron-polaron complexes rather than simply electrons in an impurity band. The mechanism of electron trapping is the interaction with soft valence fluctuations.Comment: 12 pages, 3 figure

    Band-filling effects on electron-phonon properties of normal and superconducting state

    Full text link
    We address the effect of band filling on the effective electron mass māˆ—m^* and the superconducting critical temperature TcT_c in a electron-phonon system. We compare the vertex corrected theory with the non-crossing approximation of the Holstein model within a local approximation. We identify two regions of the electron density where māˆ—m^* and TcT_c are enhanced or decreased by the inclusion of the vertex diagrams. We show that the crossover between the enhancement at low density and the decrease towards half filling is almost independent of the microscopic electron-phonon parameters. These different behaviors are explained in terms of the net sign of the vertex diagrams which is positive at low densities and negative close to half filling. Predictions of the present theory for doped MgB2_2, which is argued to be in the low density regime, are discussed.Comment: 13 revtex pages, figures eps include
    • ā€¦
    corecore