964 research outputs found

    Square Root Singularity in Boundary Reflection Matrix

    Get PDF
    Two-particle scattering amplitudes for integrable relativistic quantum field theory in 1+1 dimensions can normally have at most singularities of poles and zeros along the imaginary axis in the complex rapidity plane. It has been supposed that single particle amplitudes of the exact boundary reflection matrix exhibit the same structure. In this paper, single particle amplitudes of the exact boundary reflection matrix corresponding to the Neumann boundary condition for affine Toda field theory associated with twisted affine algebras a2n(2)a_{2n}^{(2)} are conjectured, based on one-loop result, as having a new kind of square root singularity.Comment: 10 pages, latex fil

    Adaptive Detection of Instabilities: An Experimental Feasibility Study

    Full text link
    We present an example of the practical implementation of a protocol for experimental bifurcation detection based on on-line identification and feedback control ideas. The idea is to couple the experiment with an on-line computer-assisted identification/feedback protocol so that the closed-loop system will converge to the open-loop bifurcation points. We demonstrate the applicability of this instability detection method by real-time, computer-assisted detection of period doubling bifurcations of an electronic circuit; the circuit implements an analog realization of the Roessler system. The method succeeds in locating the bifurcation points even in the presence of modest experimental uncertainties, noise and limited resolution. The results presented here include bifurcation detection experiments that rely on measurements of a single state variable and delay-based phase space reconstruction, as well as an example of tracing entire segments of a codimension-1 bifurcation boundary in two parameter space.Comment: 29 pages, Latex 2.09, 10 figures in encapsulated postscript format (eps), need psfig macro to include them. Submitted to Physica

    Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube

    Full text link
    We have studied the afterpulse of a hemispherical photomultiplier tube for an upcoming reactor neutrino experiment. The timing, the amplitude, and the rate of the afterpulse for a 10 inch photomultiplier tube were measured with a 400 MHz FADC up to 16 \ms time window after the initial signal generated by an LED light pulse. The time and amplitude correlation of the afterpulse shows several distinctive groups. We describe the dependencies of the afterpulse on the applied high voltage and the amplitude of the main light pulse. The present data could shed light upon the general mechanism of the afterpulse.Comment: 11 figure

    Natural Warm Inflation

    Full text link
    We derive the requirements that a generic axion-like field has to satisfy in order to play the role of the inflaton field in the warm inflation scenario. Compared to the parameter space in ordinary natural inflation models, we find that the parameter space in our model is enlarged. In particular, we avoid the problem of having an axion decay constant ff that relates to the Planck scale, which is instead present in the ordinary natural inflation models; in fact, our model can easily accommodate values of the axion decay constant that lie well below the Planck scale.Comment: 19 pages, 7 figures; version accepted in JCA

    Graft immaturity and safety concerns in transplanted human kidney organoids

    Get PDF
    For chronic kidney disease, regeneration of lost nephrons with human kidney organoids derived from induced pluripotent stem (iPS) cells is proposed to be an attractive potential therapeutic option. It remains unclear, however, whether organoids transplanted into kidneys in vivo would be safe or functional. Here, we purified kidney organoids and transplanted them beneath the kidney capsules of immunodeficient mice to test their safety and maturity. Kidney organoid grafts survived for months after transplantation and became vascularized from host mouse endothelial cells. Nephron-like structures in grafts appeared more mature than kidney organoids in vitro, but remained immature compared with the neighboring mouse kidney tissue. Ultrastructural analysis revealed filtration barrier-like structures, capillary lumens, and tubules with brush border in the transplanted kidney organoids, which were more mature than those of the kidney organoids in vitro but not as organized as adult mammalian kidneys. Immaturity was a common feature of three separate differentiation protocols by immunofluorescence analysis and single cell RNA sequencing. Stroma of transplanted kidney organoid grafts were filled with vimentin-positive mesenchymal cells, and chondrogenesis, cystogenesis, and stromal expansion were observed in the long term. Transcription profiles showed that long-term maintenance after kidney organoid transplantation induced transcriptomic reprogramming with prominent suppression of cell-cycle-related genes and upregulation of extracellular matrix organization. Our data suggest that kidney organoids derived from iPS cells may be transplantable but strategies to improve nephron differentiation and purity are required before they can be applied in humans as a therapeutic option.11Ysciescopuskc

    Exact Calculation of the Vortex-Antivortex Interaction Energy in the Anisotropic 3D XY-model

    Full text link
    We have developed an exact method to calculate the vortex-antivortex interaction energy in the anisotropic 3D-XY model. For this calculation, dual transformation which is already known for the 2D XY-model was extended. We found an explicit form of this interaction energy as a function of the anisotropic ratio and the separation rr between the vortex and antivortex located on the same layer. The form of interaction energy is lnr\ln r at the small rr limi t but is proportional to rr at the opposite limit. This form of interaction energ y is consistent with the upper bound calculation using the variational method by Cataudella and Minnhagen.Comment: REVTeX 12 pages, In print for publication in Phys. Rev.

    Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS and dilaton black holes

    Full text link
    It is well known that the charged scalar perturbations of the Reissner-Nordstrom metric will decay slower at very late times than the neutral ones, thereby dominating in the late time signal. We show that at the stage of quasinormal ringing, on the contrary, the neutral perturbations will decay slower for RN, RNAdS and dilaton black holes. The QN frequencies of the nearly extreme RN black hole have the same imaginary parts (damping times) for charged and neutral perturbations. An explanation of this fact is not clear but, possibly, is connected with the Choptuik scaling.Comment: 10 pages, LaTeX, 4 figures, considerable changes made and wrong interpretation of computations correcte

    Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases

    Full text link
    This study aims at the early diagnostics of geoeffectiveness of coronal mass ejections (CMEs) from quantitative parameters of the accompanying EUV dimming and arcade events. We study events of the 23th solar cycle, in which major non-recurrent geomagnetic storms (GMS) with Dst <-100 nT are sufficiently reliably identified with their solar sources in the central part of the disk. Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant dimming and arcade areas and calculate summarized unsigned magnetic fluxes in these regions at the photospheric level. The high relevance of this eruption parameter is displayed by its pronounced correlation with the Forbush decrease (FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz component but is determined by global characteristics of ICMEs. Correlations with the same magnetic flux in the solar source region are found for the GMS intensity (at the first step, without taking into account factors determining the Bz component near the Earth), as well as for the temporal intervals between the solar eruptions and the GMS onset and peak times. The larger the magnetic flux, the stronger the FD and GMS intensities are and the shorter the ICME transit time is. The revealed correlations indicate that the main quantitative characteristics of major non-recurrent space weather disturbances are largely determined by measurable parameters of solar eruptions, in particular, by the magnetic flux in dimming areas and arcades, and can be tentatively estimated in advance with a lead time from 1 to 4 days. For GMS intensity, the revealed dependencies allow one to estimate a possible value, which can be expected if the Bz component is negative.Comment: 27 pages, 5 figures. Accepted for publication in Solar Physic

    Effects of diet composition on growth performance and feed conversion efficiency in Alphitobius diaperinus larvae

    Get PDF
    Alphitobius diap]erinus has been recommended for mass-production as feed in a rearing facility because of its small size and short biological cycle. This study evaluated the effects of wheat bran and casein or their blend as insect diets on growth performance and feed conversion efficiency of A. diaperinus larvae in the laboratory. Casein and wheat bran were the protein and carbohydrate sources of choice, respectively, for diet preparation. Five experimental diet treatments to be tested were designed as follows: control (100% casein), T1 (75% casein +25% wheat bran), T2 (50% casein +50% wheat bran), T3 (25% casein +70% wheat bran), and T4 (100% wheat bran). A total of 150 new hatched larvae were randomly allotted to one of the five dietary treatments, with three replicates (10 hatched larvae per replicate). The standard colonies were composed of 10 hatched larvae, without distinction of sex, reared in a plastic box (14×8×5 cm) provided with aeration holes on the top. The evaluation of A. diaperinus larvae included growth performance and feed efficiency. Using casein and wheat bran blends for diet had a positive effect on weight gain and feed conversion ratio of A. diaperinus larvae, including an increase in average larval survival and average larval weight. Using casein and wheat blends (75% casein +25% wheat bran or 25% casein +70% wheat bran) as insect-rearing diet will allow effective utilization of the feed for poultry when using the edible portion of mealworms before reaching the pupae stage

    Dynamics of oscillating scalar field in thermal environment

    Full text link
    There often appear coherently oscillating scalar fields in particle physics motivated cosmological scenarios, which may have rich phenomenological consequences. Scalar fields should somehow interact with background thermal bath in order to decay into radiation at an appropriate epoch, but introducing some couplings to the scalar field makes the dynamics complicated. We investigate in detail the dynamics of a coherently oscillating scalar field, which has renormalizable couplings to another field interacting with thermal background. The scalar field dynamics and its resultant abundance are significantly modified by taking account of following effects : (1) thermal correction to the effective potential, (2) dissipation effect on the scalar field in thermal bath, (3) non-perturbative particle production events and (4) formation of non-topological solitons. There appear many time scales depending on the scalar mass, amplitude, couplings and the background temperature, which make the efficiencies of these effects non-trivial.Comment: 45 pages, 6 figures; v2: several typos corrected; v3: minor corrections and references added; v4: minor corrections to reflect the published version; v5: minor correction
    corecore