6 research outputs found

    Photocatalytic Properties of Sn-doped TiO2

    Get PDF
    The synthesis of Sn-doped titania nanoparticles (Sn content of 0, 3, 6, and 12 at. %) was carried out using solgel chemical route based on the common acid hydrolysis of titanium and tin tetrachlorides. Phase composition, morphology, particle size, pore size distribution and photocatalytic performance of obtained materials were systematically studied by various analytical techniques (XRD, HR-TEM, low-temperature nitrogen adsorption porosimetry, UV-Vis spectroscopy). An increase in the Sn dopant concentration causes a gradual decrease in the relative content of the anatase phase from 100 mol. % for undoped titania to about 3 mol. % for material with maximal doping concentration. Materials with a Sn atomic content of 3 and 6 at. % have the maximum values of the specific surface area (about 280-290 m2/g) that corresponds to the smallest (approximately 2.5 nm) anatase crystallite. The photocatalytic activity of the synthesized Sn-doped TiO2 nanoparticles was analyzed by the method of methylene blue dye photodegradation in an aqueous solution under UV irradiation. The highest reaction rate constant and maximal methylene blue dye adsorption capacity were obtained for 3 at. % Sn-doped titania with the mixed anatase/rutile composition. The indirect optical transitions are characteristic for all synthesized materials. A decrease in the bandgap energy values with increasing Sn content from 3.21 eV for pure anatase to 2.82 eV for titania doped with 12 at. % of the Sn was observed. The growth in photocatalytic activity for the mixed-phase sample can be considered as a result of the increasing number of surface active centers due to the anatase-rutile phase transition

    RUTILE NANORODS: SYNTHESIS, STRUCTURE AND ELECTROCHEMICAL PROPERTIES

    No full text
    Nanodispersed rutile with rod-like particles was synthesized by hydrolysis of TiCl4 in hydrochloric acid - ethanol alcohol aqueous solution at 40Β°C. It was found that the specific surface area, crystallite size, degree of agglomeration are determined by molar ratios of ethanol. The obtained material was used as the base of cathode composition for lithium power sources. The maximum values of specific capacity (250 mAh/g) at discharge in galvanostatic conditions are fixed in the case of using material with the maximum agglomeration degree and minimal particle size. Phasic character of Li+ ions intercalation is set and the diffusion coefficient at different stages of the process is calculated.</p

    Π ΠΎΠ·ΠΌΡ–Ρ€Π½ΠΈΠΉ Π΅Ρ„Π΅ΠΊΡ‚ Ρƒ наночастинках Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΡΠΈΠ»Ρ–Π»ΡŒΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΡƒ

    No full text
    The synthesis of organosilicas with a predetermined ratio of trimethylsilyl groups and silanols using trimethyloxysilane and acetic acid as a modifier and catalyst respectively was carried out in this work. It has been established that grafted trimethylsilyl groups influence the structural state of silica. The reducing of the surface tension and, consequently, the Laplace pressure in the SiO2 globules leads to an increase in the valence angle in the siloxane bridges and the length of Si – O-bond. This dimensional effect in the IR-spectra of modified silica is displayed by displacement of absorption bands in the short-wave region associated with asymmetric (a) and asymmetric-deformation (Π° + Ξ΄O Si O) vibrations of siloxane bridges.Π£ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ синтСз ΠΎΡ€Π³Π°Π½ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΡ–Π² Π· Π½Π°ΠΏΠ΅Ρ€Π΅Π΄ Π·Π°Π΄Π°Π½ΠΈΠΌ ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡΠΌ тримСтилсилі- Π»ΡŒΠ½ΠΈΡ… Π³Ρ€ΡƒΠΏ Ρ‚Π° силанолів, Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‡ΠΈ тримСтилСтоксісилан Ρ‚Π° ΠΎΡ†Ρ‚ΠΎΠ²Ρƒ кислоту Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ як ΠΌΠΎ- Π΄ΠΈΡ„Ρ–ΠΊΠ°Ρ‚ΠΎΡ€ Ρ– ΠΊΠ°Ρ‚Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€. ВстановлСно, Ρ‰ΠΎ ΠΏΡ€ΠΈΡ‰Π΅ΠΏΠ»Π΅Π½Ρ– Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΡΠΈΠ»Ρ–Π»ΡŒΠ½Ρ– Π³Ρ€ΡƒΠΏΠΈ Π²ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡŒ Π½Π° струк- Ρ‚ΡƒΡ€Π½ΠΈΠΉ стан ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΡƒ. Π—ΠΌΠ΅Π½ΡˆΠ΅Π½Π½Ρ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΠ³ΠΎ натягу Ρ– Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Лапласового тиску Π² Π³Π»ΠΎΠ±ΡƒΠ»Π°Ρ… SiO2 ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ Π²Π°Π»Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΠΊΡƒΡ‚Π° Π² силоксанових містках Ρ‚Π° Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΈ Si – O-зв’язку. Π’ Π†Π§-спСктрах ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΡ… ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΡ–Π² Π΄Π°Π½ΠΈΠΉ Ρ€ΠΎΠ·ΠΌΡ–Ρ€Π½ΠΈΠΉ Π΅Ρ„Π΅ΠΊΡ‚ ΠΏΡ€ΠΎΡΠ²Π»ΡΡ”Ρ‚ΡŒΡΡ зміщСнням Ρƒ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎ- Ρ…Π²ΠΈΠ»ΡŒΠΎΠ²Ρƒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ смуг поглинання, пов’язаних Π· асимСтричними (a) Ρ‚Π° асимСтричними Ρ– Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°- Ρ†Ρ–ΠΉΠ½ΠΈΠΌΠΈ (a + Ξ΄O Si O) коливаннями силоксанових містків.Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ синтСз ΠΎΡ€Π³Π°Π½ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠ² с Π·Π°Ρ€Π°Π½Π΅Π΅ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ тримСтилси- Π»ΠΈΠ»ΡŒΠ½ΠΈΡ… Π³Ρ€ΡƒΠΏΠΏ ΠΈ силанола, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ тримСтилСтоксисилан ΠΈ ΡƒΠΊΡΡƒΡΠ½ΡƒΡŽ кислоту соотвСтствСнно ΠΊΠ°ΠΊ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€ ΠΈ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΈΡ‚Ρ‹Π΅ Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΡΠΈΠ»ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° структурноС состояниС ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ°. УмСньшСниС повСрхностного натяТСния ΠΈ соотвСтствСнно Π›Π°ΠΏΠ»Π°- сового давлСния Π² Π³Π»ΠΎΠ±ΡƒΠ»Π°Ρ… SiO2 ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ Π²Π°Π»Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° Π² силоксановых мостиках ΠΈ Π΄Π»ΠΈΠ½Ρ‹ Si – O-связи. Π’ ИК-спСктрах ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠ² Π΄Π°Π½Π½Ρ‹ΠΉ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹ΠΉ эффСкт ΠΏΡ€ΠΎ- являСтся смСщСниСм Π² ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ полос поглощСния, связанных с асиммСтричными (a) ΠΈ асиммСтричными-Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ (a + Ξ΄O Si O) колСбаниями силоксановых мостиков
    corecore