5 research outputs found

    Decomposition of EEG Signals for Multichannel Neural Activity Analysis in Animal Experiments

    No full text
    International audienceWe describe in this paper some advanced protocols for the discrimination and classification of neuronal spike waveforms within multichannel electrophysiological recordings. Sparse decomposition was used to serarate the linearly independent signals underlying sensory information in cortical spike firing pat- terns. We introduce some modifications in the the IDE algorithm to take into account prior knowledge on the spike waveforms. We have investigated motor cortex responses recorded during movement in freely moving rats to provide ev- idence for the relationship between these patterns and special behavioral task

    Robust MEG Source Localization of Event Related Potentials: Identifying Relevant Sources by Non-Gaussianity

    No full text
    Independent Component Analysis (ICA) is a frequently used preprocessing step in source localization of MEG and EEG data. By decomposing the measured data into maximally independent components (ICs), estimates of the time course and the topographies of neural sources are obtained. In this paper, we show that when using estimated source topographies for localization, correlations between neural sources introduce an error into the obtained source locations. This error can be avoided by reprojecting ICs onto the observation space, but requires the identification of relevant ICs. For Event Related Potentials (ERPs), we identify relevant ICs by estimating their non-Gaussianity. The efficacy of the approach is tested on auditory evoked potentials (AEPs) recorded by MEG. It is shown that ten trials are sufficient for reconstructing all important characteristics of the AEP, and source localization of the reconstructed ERP yields the same focus of activity as the average of 250 trials
    corecore