32 research outputs found

    Delta Baryon Magnetic Moments From Lattice QCD

    Get PDF
    Theoretical predictions for the magnetic moments of the physical Delta baryons are extracted from lattice QCD calculations. We utilize finite-range regulated effective field theory that is constructed to have the correct Dirac moment mass dependence in the region where the up and down quark masses are heavy. Of particular interest is the chiral nonanalytic behaviour encountered as the nucleon-pion decay channel opens. We find a Delta^++ magnetic moment (at the Delta pole) of 4.99 \pm 0.56 \mu_N. This result is within the Particle Data Group range of 3.7-7.5 \mu_N and compares well with the experimental result of Bosshard et al. of 4.52 \pm 0.51 \pm 0.45 \mu_N. The interplay between the different pion-loop contributions to the Delta^+ magnetic moment leads to the surprising result that the proton moment may exceed that of the Delta^+, contrary to conventional expectations.Comment: 7 pages, 7 figures, RevTex 4; Updated to include a recent experimental resul

    Quark-quark correlations and baryon electroweak observables

    Get PDF
    The simple independent quark models have difficulties explaining simultaneously the totality of the known hyperon magnetic moments and hyperon semi-leptonic decay rates. We show that both the Goldstone boson loop contributions and the two-quark effective exchange currents are essential in explaining these observables.Comment: 7 pages, 1 figur

    Chiral QCD, General QCD Parameterization and Constituent Quark Models

    Full text link
    Several recent papers -using effective QCD chiral Lagrangians- reproduced results obtained with the general QCD parameterization (GP). These include the baryon 8+10 mass formula, the octet magnetic moments and the coincidental nature of the "perfect" -3/2 ratio between the magnetic moments of p and n. Although we anticipated that the GP covers the case of chiral treatments, the above results explicitly exemplify this fact. Also we show by the GP that -in any model or theory (chiral or non chiral) reproducing the results of exact QCD- the Franklin (Coleman Glashow) sum rule for the octet magnetic moments must be violated.Comment: 10 pages, Latex; abridged version (same results), removed some reference

    Chiral extrapolation of lattice data for B-meson decay constant

    Full text link
    The B-meson decay constant fB has been calculated from unquenched lattice QCD in the unphysical region. For extrapolating the lattice data to the physical region, we propose a phenomenological functional form based on the effective chiral perturbation theory for heavy mesons, which respects both the heavy quark symmetry and the chiral symmetry, and the non-relativistic constituent quark model which is valid at large pion masses. The inclusion of pion loop corrections leads to nonanalytic contributions to fB when the pion mass is small. The finite-range regularization technique is employed for the resummation of higher order terms of the chiral expansion. We also take into account the finite volume effects in lattice simulations. The dependence on the parameters and other uncertainties in our model are discussed.Comment: 11 pages, 3 Postscript figures, accepted for publication in EPJ

    Relation Between Chiral Susceptibility and Solutions of Gap Equation in Nambu--Jona-Lasinio Model

    Get PDF
    We study the solutions of the gap equation, the thermodynamic potential and the chiral susceptibility in and beyond the chiral limit at finite chemical potential in the Nambu--Jona-Lasinio (NJL) model. We give an explicit relation between the chiral susceptibility and the thermodynamic potential in the NJL model. We find that the chiral susceptibility is a quantity being able to represent the furcation of the solutions of the gap equation and the concavo-convexity of the thermodynamic potential in NJL model. It indicates that the chiral susceptibility can identify the stable state and the possibility of the chiral phase transition in NJL model.Comment: 21 pages, 6 figures, misprints are correcte

    Transverse Spin Structure of the Nucleon through Target Single Spin Asymmetry in Semi-Inclusive Deep-Inelastic (e,eπ±)(e,e^\prime \pi^\pm) Reaction at Jefferson Lab

    Full text link
    Jefferson Lab (JLab) 12 GeV energy upgrade provides a golden opportunity to perform precision studies of the transverse spin and transverse-momentum-dependent structure in the valence quark region for both the proton and the neutron. In this paper, we focus our discussion on a recently approved experiment on the neutron as an example of the precision studies planned at JLab. The new experiment will perform precision measurements of target Single Spin Asymmetries (SSA) from semi-inclusive electro-production of charged pions from a 40-cm long transversely polarized 3^3He target in Deep-Inelastic-Scattering kinematics using 11 and 8.8 GeV electron beams. This new coincidence experiment in Hall A will employ a newly proposed solenoid spectrometer (SoLID). The large acceptance spectrometer and the high polarized luminosity will provide precise 4-D (xx, zz, PTP_T and Q2Q^2) data on the Collins, Sivers, and pretzelocity asymmetries for the neutron through the azimuthal angular dependence. The full 2π\pi azimuthal angular coverage in the lab is essential in controlling the systematic uncertainties. The results from this experiment, when combined with the proton Collins asymmetry measurement and the Collins fragmentation function determined from the e+^+e^- collision data, will allow for a quark flavor separation in order to achieve a determination of the tensor charge of the d quark to a 10% accuracy. The extracted Sivers and pretzelocity asymmetries will provide important information to understand the correlations between the quark orbital angular momentum and the nucleon spin and between the quark spin and nucleon spin.Comment: 23 pages, 13 figures, minor corrections, matches published versio

    Quark contributions to baryon magnetic moments in full, quenched, and partially quenched QCD

    Get PDF
    The chiral nonanalytic behavior of quark-flavor contributions to the magnetic moments of octet baryons is determined in full, quenched and partially quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Σ+ provides the best opportunity to display the artifacts of the quenched approximation.Derek B. Leinwebe

    Gluons and the quark sea at high energies: distributions, polarization, tomography

    Get PDF
    This report is based on a ten-week program on "Gluons and the quark sea at high-energies", which took place at the Institute for Nuclear Theory in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics. This report is organized around four major themes: i) the spin and flavor structure of the proton, ii) three-dimensional structure of nucleons and nuclei in momentum and configuration space, iii) QCD matter in nuclei, and iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific opportunities presented by an EIC.Comment: 547 pages, A report on the joint BNL/INT/Jlab program on the science case for an Electron-Ion Collider, September 13 to November 19, 2010, Institute for Nuclear Theory, Seattle; v2 with minor changes, matches printed versio

    Gluon EMC effects in nuclear matter

    No full text
    We investigate the gluonic structure of nuclei within a mean-field model of nuclear structure based upon the modification of the structure of a bound nucleon, with the nucleon described by the Nambu–Jona-Lasinio model. This approach has been shown to reproduce the European Muon Collaboration (EMC) effect, involving the ratio of the spin-independent structure functions of a heavier nucleus to that of the deuteron. It also predicts a significant nuclear modification for the spin structure functions, known as the polarized EMC effect. Here we report sizeable nuclear modifications of the gluon distributions (a 'gluon EMC effect') for the ratios of both the unpolarized and polarized gluon distributions in nuclear matter to those of a free nucleon.X G Wang, W Bentz, I C Cloët and A W Thoma

    Quark Fragmentation to Pions in an Effective Chiral Theory

    No full text
    A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective chiral quark theory of QCD. We concentrate on the pion fragmentation function, taking into account cascade-like processes in a generalized jet-model approach. Numerical results obtained in this NJL-jet model are presented and compared to empirical parametrizations
    corecore